/** * @file TinyGsmClientUBLOX.h * @author Volodymyr Shymanskyy * @license LGPL-3.0 * @copyright Copyright (c) 2016 Volodymyr Shymanskyy * @date Nov 2016 */ #ifndef TinyGsmClientUBLOX_h #define TinyGsmClientUBLOX_h //#pragma message("TinyGSM: TinyGsmClientUBLOX") //#define TINY_GSM_DEBUG Serial #define TINY_GSM_MUX_COUNT 7 #include #define GSM_NL "\r\n" static const char GSM_OK[] TINY_GSM_PROGMEM = "OK" GSM_NL; static const char GSM_ERROR[] TINY_GSM_PROGMEM = "ERROR" GSM_NL; static const char GSM_CME_ERROR[] TINY_GSM_PROGMEM = GSM_NL "+CME ERROR:"; enum SimStatus { SIM_ERROR = 0, SIM_READY = 1, SIM_LOCKED = 2, }; enum RegStatus { REG_UNREGISTERED = 0, REG_SEARCHING = 2, REG_DENIED = 3, REG_OK_HOME = 1, REG_OK_ROAMING = 5, REG_UNKNOWN = 4, }; class TinyGsmUBLOX : public TinyGsmModem { public: class GsmClient : public Client { friend class TinyGsmUBLOX; typedef TinyGsmFifo RxFifo; public: GsmClient() {} GsmClient(TinyGsmUBLOX& modem, uint8_t mux = 0) { init(&modem, mux); } bool init(TinyGsmUBLOX* modem, uint8_t mux = 0) { this->at = modem; this->mux = mux; sock_available = 0; prev_check = 0; sock_connected = false; got_data = false; return true; } public: virtual int connect(const char *host, uint16_t port) { if (sock_connected) { stop(); // If we're creating a new connection on the same client, we need to wait // until the async close has finished on Cat-M modems. // After close has completed, the +UUSOCL should appear. if (at->isCatM) { DBG("Waiting for +UUSOCL URC on", mux); for (unsigned long start = millis(); millis() - start < 120000L; ) { at->maintain(); if (!sock_connected) break; } } } TINY_GSM_YIELD(); rx.clear(); sock_connected = at->modemConnect(host, port, &mux); at->sockets[mux] = this; at->maintain(); return sock_connected; } virtual int connect(IPAddress ip, uint16_t port) { String host; host.reserve(16); host += ip[0]; host += "."; host += ip[1]; host += "."; host += ip[2]; host += "."; host += ip[3]; return connect(host.c_str(), port); } virtual void stop() { TINY_GSM_YIELD(); // Read and dump anything remaining in the modem's internal buffer. // The socket will appear open in response to connected() even after it // closes until all data is read from the buffer. // Doing it this way allows the external mcu to find and get all of the data // that it wants from the socket even if it was closed externally. rx.clear(); at->maintain(); while (sock_available > 0) { sock_available -= at->modemRead(TinyGsmMin((uint16_t)rx.free(), sock_available), mux); rx.clear(); at->maintain(); } at->modemDisconnect(mux); // We don't actually know if the CatM modem has finished closing because // we're using an "asynchronous" close if (!at->isCatM) sock_connected = false; } virtual size_t write(const uint8_t *buf, size_t size) { TINY_GSM_YIELD(); at->maintain(); return at->modemSend(buf, size, mux); } virtual size_t write(uint8_t c) { return write(&c, 1); } virtual size_t write(const char *str) { if (str == NULL) return 0; return write((const uint8_t *)str, strlen(str)); } virtual int available() { TINY_GSM_YIELD(); if (!rx.size()) { // Workaround: sometimes SARA R410 forgets to notify about data arrival. // TODO: Currently we ping the module periodically, // but maybe there's a better indicator that we need to poll if (millis() - prev_check > 250) { got_data = true; prev_check = millis(); } at->maintain(); } return rx.size() + sock_available; } virtual int read(uint8_t *buf, size_t size) { TINY_GSM_YIELD(); at->maintain(); size_t cnt = 0; while (cnt < size) { size_t chunk = TinyGsmMin(size-cnt, rx.size()); if (chunk > 0) { rx.get(buf, chunk); buf += chunk; cnt += chunk; continue; } // Workaround: sometimes SARA R410 forgets to notify about data arrival. // TODO: Currently we ping the module periodically, // but maybe there's a better indicator that we need to poll if (millis() - prev_check > 250) { got_data = true; prev_check = millis(); } at->maintain(); // TODO: Read directly into user buffer? if (sock_available > 0) { sock_available -= at->modemRead(TinyGsmMin((uint16_t)rx.free(), sock_available), mux); } else { break; } } return cnt; } virtual int read() { uint8_t c; if (read(&c, 1) == 1) { return c; } return -1; } virtual int peek() { return -1; } //TODO virtual void flush() { at->stream.flush(); } virtual uint8_t connected() { if (available()) { return true; } return sock_connected; } virtual operator bool() { return connected(); } /* * Extended API */ String remoteIP() TINY_GSM_ATTR_NOT_IMPLEMENTED; private: TinyGsmUBLOX* at; uint8_t mux; uint16_t sock_available; uint32_t prev_check; bool sock_connected; bool got_data; RxFifo rx; }; class GsmClientSecure : public GsmClient { public: GsmClientSecure() {} GsmClientSecure(TinyGsmUBLOX& modem, uint8_t mux = 1) : GsmClient(modem, mux) {} public: virtual int connect(const char *host, uint16_t port) { stop(); TINY_GSM_YIELD(); rx.clear(); sock_connected = at->modemConnect(host, port, &mux, true); at->sockets[mux] = this; at->maintain(); return sock_connected; } }; public: TinyGsmUBLOX(Stream& stream) : TinyGsmModem(stream), stream(stream) { memset(sockets, 0, sizeof(sockets)); isCatM = false; // For SARA R4 and N4 series } /* * Basic functions */ bool init(const char* pin = NULL) { DBG(GF("### TinyGSM Version:"), TINYGSM_VERSION); if (!testAT()) { return false; } sendAT(GF("E0")); // Echo Off if (waitResponse() != 1) { return false; } #ifdef TINY_GSM_DEBUG sendAT(GF("+CMEE=2")); // turn on verbose error codes #else sendAT(GF("+CMEE=0")); // turn off error codes #endif waitResponse(); String name = getModemName(); DBG(GF("### Modem:"), name); if (name.startsWith("u-blox SARA-R4") or name.startsWith("u-blox SARA-N4")) { isCatM = true; } else if (name.startsWith("u-blox SARA-N2")) { DBG(GF("### SARA N2 NB-IoT modems not supported!"), name); } int ret = getSimStatus(); // if the sim isn't ready and a pin has been provided, try to unlock the sim if (ret != SIM_READY && pin != NULL && strlen(pin) > 0) { simUnlock(pin); return (getSimStatus() == SIM_READY); } // if the sim is ready, or it's locked but no pin has been provided, return true else { return (ret == SIM_READY || ret == SIM_LOCKED); } } String getModemName() { sendAT(GF("+CGMI")); String res1; if (waitResponse(1000L, res1) != 1) { return "u-blox Cellular Modem"; } res1.replace(GSM_NL "OK" GSM_NL, ""); res1.trim(); sendAT(GF("+GMM")); String res2; if (waitResponse(1000L, res2) != 1) { return "u-blox Cellular Modem"; } res2.replace(GSM_NL "OK" GSM_NL, ""); res2.trim(); return res1 + String(' ') + res2; } void setBaud(unsigned long baud) { sendAT(GF("+IPR="), baud); } bool testAT(unsigned long timeout = 10000L) { for (unsigned long start = millis(); millis() - start < timeout; ) { sendAT(GF("")); if (waitResponse(200) == 1) return true; delay(100); } return false; } void maintain() { for (int mux = 0; mux < TINY_GSM_MUX_COUNT; mux++) { GsmClient* sock = sockets[mux]; if (sock && sock->got_data) { sock->got_data = false; sock->sock_available = modemGetAvailable(mux); } } while (stream.available()) { waitResponse(15, NULL, NULL); } } bool factoryDefault() { if (!isCatM) { sendAT(GF("+UFACTORY=0,1")); // No factory restore, erase NVM waitResponse(); sendAT(GF("+CFUN=16")); // Reset return waitResponse() == 1; } else { sendAT(GF("&F")); // Resets the current profile, other NVM not affected return waitResponse() == 1; } } String getModemInfo() { sendAT(GF("I")); String res; if (waitResponse(1000L, res) != 1) { return ""; } res.replace(GSM_NL "OK" GSM_NL, ""); res.replace(GSM_NL, " "); res.trim(); return res; } bool hasSSL() { return true; } bool hasWifi() { return false; } bool hasGPRS() { return true; } /* * Power functions */ bool restart() { if (!testAT()) { return false; } if (!isCatM) { sendAT(GF("+CFUN=16")); } else { sendAT(GF("+CFUN=15")); } if (waitResponse(10000L) != 1) { return false; } delay(3000); // TODO: Verify delay timing here return init(); } bool poweroff() { sendAT(GF("+CPWROFF")); return waitResponse(40000L) == 1; } bool radioOff() { sendAT(GF("+CFUN=0")); if (waitResponse(10000L) != 1) { return false; } delay(3000); return true; } bool sleepEnable(bool enable = true) TINY_GSM_ATTR_NOT_IMPLEMENTED; /* * SIM card functions */ bool simUnlock(const char *pin) { sendAT(GF("+CPIN=\""), pin, GF("\"")); return waitResponse() == 1; } String getSimCCID() { sendAT(GF("+CCID")); if (waitResponse(GF(GSM_NL "+CCID:")) != 1) { return ""; } String res = stream.readStringUntil('\n'); waitResponse(); res.trim(); return res; } String getIMEI() { sendAT(GF("+CGSN")); if (waitResponse(GF(GSM_NL)) != 1) { return ""; } String res = stream.readStringUntil('\n'); waitResponse(); res.trim(); return res; } SimStatus getSimStatus(unsigned long timeout = 10000L) { for (unsigned long start = millis(); millis() - start < timeout; ) { sendAT(GF("+CPIN?")); if (waitResponse(GF(GSM_NL "+CPIN:")) != 1) { delay(1000); continue; } int status = waitResponse(GF("READY"), GF("SIM PIN"), GF("SIM PUK"), GF("NOT INSERTED")); waitResponse(); switch (status) { case 2: case 3: return SIM_LOCKED; case 1: return SIM_READY; default: return SIM_ERROR; } } return SIM_ERROR; } RegStatus getRegistrationStatus() { if (isCatM) { // Check EPS registration for LTE modules sendAT(GF("+CEREG?")); if (waitResponse(GF(GSM_NL "+CEREG:")) != 1) { return REG_UNKNOWN; } } else { sendAT(GF("+CGREG?")); // Check GPRS registration for others if (waitResponse(GF(GSM_NL "+CGREG:")) != 1) { return REG_UNKNOWN; } } streamSkipUntil(','); // Skip format (0) int status = stream.readStringUntil('\n').toInt(); waitResponse(); return (RegStatus)status; } String getOperator() { sendAT(GF("+COPS?")); if (waitResponse(GF(GSM_NL "+COPS:")) != 1) { return ""; } streamSkipUntil('"'); // Skip mode and format String res = stream.readStringUntil('"'); waitResponse(); return res; } /* * Generic network functions */ int16_t getSignalQuality() { sendAT(GF("+CSQ")); if (waitResponse(GF(GSM_NL "+CSQ:")) != 1) { return 99; } int res = stream.readStringUntil(',').toInt(); waitResponse(); return res; } bool isNetworkConnected() { RegStatus s = getRegistrationStatus(); if (s == REG_OK_HOME || s == REG_OK_ROAMING) return true; else if (s == REG_UNKNOWN) // for some reason, it can hang at unknown.. return isGprsConnected(); else return false; } bool setURAT( uint8_t urat ) { // AT+URAT=[,[,<2ndPreferredAct>]] sendAT(GF("+COPS=2")); // Deregister from network if (waitResponse() != 1) { return false; } sendAT(GF("+URAT="), urat); // Radio Access Technology (RAT) selection if (waitResponse() != 1) { return false; } sendAT(GF("+COPS=0")); // Auto-register to the network if (waitResponse() != 1) { return false; } return restart(); } /* * GPRS functions */ bool gprsConnect(const char* apn, const char* user = NULL, const char* pwd = NULL) { gprsDisconnect(); sendAT(GF("+CGATT=1")); // attach to GPRS if (waitResponse(360000L) != 1) { return false; } // Using CGDCONT sets up an "external" PCP context, i.e. a data connection // using the external IP stack (e.g. Windows dial up) and PPP link over the // serial interface. This is the only command set supported by the LTE-M // and LTE NB-IoT modules (SARA-R4xx, SARA-N4xx) // Setting up the PSD profile/PDP context with the UPSD commands sets up an // "internal" PDP context, i.e. a data connection using the internal IP // stack and related AT commands for sockets. This is what we're using for // all of the other modules. if (isCatM) { if (user && strlen(user) > 0) { sendAT(GF("+CGAUTH=1,0,\""), user, GF("\",\""), pwd, '"'); // Set the authentication waitResponse(); } sendAT(GF("+CGDCONT=1,\"IP\",\""), apn, '"'); // Define PDP context 1 waitResponse(); sendAT(GF("+CGACT=1,1")); // activate PDP profile/context 1 if (waitResponse(150000L) != 1) { return false; } return true; } else { sendAT(GF("+UPSD=0,1,\""), apn, '"'); // Set APN for PSD profile 0 waitResponse(); if (user && strlen(user) > 0) { sendAT(GF("+UPSD=0,2,\""), user, '"'); // Set user for PSD profile 0 waitResponse(); } if (pwd && strlen(pwd) > 0) { sendAT(GF("+UPSD=0,3,\""), pwd, '"'); // Set password for PSD profile 0 waitResponse(); } sendAT(GF("+UPSD=0,7,\"0.0.0.0\"")); // Dynamic IP on PSD profile 0 waitResponse(); sendAT(GF("+UPSDA=0,3")); // Activate the PDP context associated with profile 0 if (waitResponse(360000L) != 1) { return false; } sendAT(GF("+UPSND=0,8")); // Activate PSD profile 0 if (waitResponse(GF(",8,1")) != 1) { return false; } waitResponse(); return true; } } bool gprsDisconnect() { // LTE-M and NB-IoT modules do not support UPSx commands if (isCatM) { sendAT(GF("+CGACT=1,0")); // Deactivate PDP context 1 if (waitResponse(40000L) != 1) { return false; } } else { sendAT(GF("+UPSDA=0,4")); // Deactivate the PDP context associated with profile 0 if (waitResponse(360000L) != 1) return false; } sendAT(GF("+CGATT=0")); // detach from GPRS if (waitResponse(360000L) != 1) return false; return true; } bool isGprsConnected() { sendAT(GF("+CGATT?")); if (waitResponse(GF(GSM_NL "+CGATT:")) != 1) { return false; } int res = stream.readStringUntil('\n').toInt(); waitResponse(); if (res != 1) return false; return localIP() != IPAddress(0,0,0,0); } /* * IP Address functions */ String getLocalIP() { // LTE-M and NB-IoT modules do not support UPSx commands if (isCatM) { sendAT(GF("+CGPADDR")); if (waitResponse(GF(GSM_NL "+CGPADDR:")) != 1) { return ""; } streamSkipUntil(','); // Skip context id String res = stream.readStringUntil('\r'); if (waitResponse() != 1) { return ""; } return res; } else { sendAT(GF("+UPSND=0,0")); if (waitResponse(GF(GSM_NL "+UPSND:")) != 1) { return ""; } streamSkipUntil(','); // Skip PSD profile streamSkipUntil('\"'); // Skip request type String res = stream.readStringUntil('\"'); if (waitResponse() != 1) { return ""; } return res; } } /* * Phone Call functions */ bool setGsmBusy(bool busy = true) TINY_GSM_ATTR_NOT_AVAILABLE; bool callAnswer() TINY_GSM_ATTR_NOT_IMPLEMENTED; bool callNumber(const String& number) TINY_GSM_ATTR_NOT_IMPLEMENTED; bool callHangup() TINY_GSM_ATTR_NOT_IMPLEMENTED; /* * Messaging functions */ String sendUSSD(const String& code) TINY_GSM_ATTR_NOT_IMPLEMENTED; bool sendSMS(const String& number, const String& text) { sendAT(GF("+CSCS=\"GSM\"")); // Set GSM default alphabet waitResponse(); sendAT(GF("+CMGF=1")); // Set preferred message format to text mode waitResponse(); sendAT(GF("+CMGS=\""), number, GF("\"")); // set the phone number if (waitResponse(GF(">")) != 1) { return false; } stream.print(text); // Actually send the message stream.write((char)0x1A); stream.flush(); return waitResponse(60000L) == 1; } bool sendSMS_UTF16(const String& number, const void* text, size_t len) TINY_GSM_ATTR_NOT_IMPLEMENTED; /* * Location functions */ String getGsmLocation() { sendAT(GF("+ULOC=2,3,0,120,1")); if (waitResponse(30000L, GF(GSM_NL "+UULOC:")) != 1) { return ""; } String res = stream.readStringUntil('\n'); waitResponse(); res.trim(); return res; } /* * Battery functions */ uint16_t getBattVoltage() TINY_GSM_ATTR_NOT_AVAILABLE; int8_t getBattPercent() { sendAT(GF("+CIND?")); if (waitResponse(GF(GSM_NL "+CIND:")) != 1) { return 0; } int res = stream.readStringUntil(',').toInt(); waitResponse(); return res; } /* * Client related functions */ protected: bool modemConnect(const char* host, uint16_t port, uint8_t* mux, bool ssl = false) { sendAT(GF("+USOCR=6")); // create a socket if (waitResponse(GF(GSM_NL "+USOCR:")) != 1) { // reply is +USOCR: ## of socket created return false; } *mux = stream.readStringUntil('\n').toInt(); waitResponse(); if (ssl) { sendAT(GF("+USOSEC="), *mux, ",1"); waitResponse(); } // Enable NODELAY sendAT(GF("+USOSO="), *mux, GF(",6,1,1")); waitResponse(); // Enable KEEPALIVE, 30 sec //sendAT(GF("+USOSO="), *mux, GF(",6,2,30000")); //waitResponse(); // connect on the allocated socket // TODO: Use faster "asynchronous" connection? // We would have to wait for the +UUSOCO URC to verify connection sendAT(GF("+USOCO="), *mux, ",\"", host, "\",", port); int rsp = waitResponse(120000L); return (1 == rsp); } bool modemDisconnect(uint8_t mux) { TINY_GSM_YIELD(); if (isCatM) { // These modems allow a faster "asynchronous" close sendAT(GF("+USOCL="), mux, GF(",1")); int rsp = waitResponse(120000L); return (1 == rsp); // but it still can take up to 120s to get a response } else { // no async close sendAT(GF("+USOCL="), mux); return (1 == waitResponse()); } } int16_t modemSend(const void* buff, size_t len, uint8_t mux) { sendAT(GF("+USOWR="), mux, ',', len); if (waitResponse(GF("@")) != 1) { return 0; } // 50ms delay, see AT manual section 25.10.4 delay(50); stream.write((uint8_t*)buff, len); stream.flush(); if (waitResponse(GF(GSM_NL "+USOWR:")) != 1) { return 0; } streamSkipUntil(','); // Skip mux int sent = stream.readStringUntil('\n').toInt(); waitResponse(); maintain(); // look for a very quick response return sent; } size_t modemRead(size_t size, uint8_t mux) { sendAT(GF("+USORD="), mux, ',', size); if (waitResponse(GF(GSM_NL "+USORD:")) != 1) { return 0; } streamSkipUntil(','); // Skip mux size_t len = stream.readStringUntil(',').toInt(); streamSkipUntil('\"'); for (size_t i=0; irx.put(c); } streamSkipUntil('\"'); waitResponse(); return len; } size_t modemGetAvailable(uint8_t mux) { sendAT(GF("+USORD="), mux, ",0"); size_t result = 0; uint8_t res = waitResponse(GF(GSM_NL "+USORD:")); // Will give error "operation not allowed" when attempting to read a socket // that you have already told to close if (res == 1) { streamSkipUntil(','); // Skip mux result = stream.readStringUntil('\n').toInt(); waitResponse(); } if (!result && res != 2 && res != 3) { // Don't check modemGetConnected after an error sockets[mux]->sock_connected = modemGetConnected(mux); } return result; } bool modemGetConnected(uint8_t mux) { sendAT(GF("+USOCTL="), mux, ",10"); uint8_t res = waitResponse(GF(GSM_NL "+USOCTL:")); if (res != 1) return false; streamSkipUntil(','); // Skip mux streamSkipUntil(','); // Skip type int result = stream.readStringUntil('\n').toInt(); // 0: the socket is in INACTIVE status (it corresponds to CLOSED status // defined in RFC793 "TCP Protocol Specification" [112]) // 1: the socket is in LISTEN status // 2: the socket is in SYN_SENT status // 3: the socket is in SYN_RCVD status // 4: the socket is in ESTABILISHED status // 5: the socket is in FIN_WAIT_1 status // 6: the socket is in FIN_WAIT_2 status // 7: the sokcet is in CLOSE_WAIT status // 8: the socket is in CLOSING status // 9: the socket is in LAST_ACK status // 10: the socket is in TIME_WAIT status waitResponse(); return (result != 0); } public: /* Utilities */ template void sendAT(Args... cmd) { streamWrite("AT", cmd..., GSM_NL); stream.flush(); TINY_GSM_YIELD(); //DBG("### AT:", cmd...); } // TODO: Optimize this! uint8_t waitResponse(uint32_t timeout, String& data, GsmConstStr r1=GFP(GSM_OK), GsmConstStr r2=GFP(GSM_ERROR), GsmConstStr r3=GFP(GSM_CME_ERROR), GsmConstStr r4=NULL, GsmConstStr r5=NULL) { /*String r1s(r1); r1s.trim(); String r2s(r2); r2s.trim(); String r3s(r3); r3s.trim(); String r4s(r4); r4s.trim(); String r5s(r5); r5s.trim(); DBG("### ..:", r1s, ",", r2s, ",", r3s, ",", r4s, ",", r5s);*/ data.reserve(64); int index = 0; unsigned long startMillis = millis(); do { TINY_GSM_YIELD(); while (stream.available() > 0) { int a = stream.read(); if (a < 0) continue; data += (char)a; if (r1 && data.endsWith(r1)) { index = 1; goto finish; } else if (r2 && data.endsWith(r2)) { index = 2; goto finish; } else if (r3 && data.endsWith(r3)) { index = 3; goto finish; } else if (r4 && data.endsWith(r4)) { index = 4; goto finish; } else if (r5 && data.endsWith(r5)) { index = 5; goto finish; } else if (data.endsWith(GF(GSM_NL "+UUSORD:"))) { int mux = stream.readStringUntil(',').toInt(); streamSkipUntil('\n'); if (mux >= 0 && mux < TINY_GSM_MUX_COUNT && sockets[mux]) { sockets[mux]->got_data = true; } data = ""; DBG("### Got Data:", mux); } else if (data.endsWith(GF(GSM_NL "+UUSOCL:"))) { int mux = stream.readStringUntil('\n').toInt(); if (mux >= 0 && mux < TINY_GSM_MUX_COUNT && sockets[mux]) { sockets[mux]->sock_connected = false; } data = ""; DBG("### Closed:", mux); } } } while (millis() - startMillis < timeout); finish: if (!index) { data.trim(); if (data.length()) { DBG("### Unhandled:", data); } data = ""; } //DBG('<', index, '>'); return index; } uint8_t waitResponse(uint32_t timeout, GsmConstStr r1=GFP(GSM_OK), GsmConstStr r2=GFP(GSM_ERROR), GsmConstStr r3=GFP(GSM_CME_ERROR), GsmConstStr r4=NULL, GsmConstStr r5=NULL) { String data; return waitResponse(timeout, data, r1, r2, r3, r4, r5); } uint8_t waitResponse(GsmConstStr r1=GFP(GSM_OK), GsmConstStr r2=GFP(GSM_ERROR), GsmConstStr r3=GFP(GSM_CME_ERROR), GsmConstStr r4=NULL, GsmConstStr r5=NULL) { return waitResponse(1000, r1, r2, r3, r4, r5); } public: Stream& stream; protected: GsmClient* sockets[TINY_GSM_MUX_COUNT]; bool isCatM; }; #endif