/** * @file TinyGsmClientESP8266.h * @author Volodymyr Shymanskyy * @license LGPL-3.0 * @copyright Copyright (c) 2016 Volodymyr Shymanskyy * @date Nov 2016 */ #ifndef SRC_TINYGSMCLIENTESP8266_H_ #define SRC_TINYGSMCLIENTESP8266_H_ // #pragma message("TinyGSM: TinyGsmClientESP8266") // #define TINY_GSM_DEBUG Serial #define TINY_GSM_MUX_COUNT 5 #define TINY_GSM_NO_MODEM_BUFFER #include "TinyGsmModem.tpp" #include "TinyGsmSSL.tpp" #include "TinyGsmTCP.tpp" #include "TinyGsmWifi.tpp" #define GSM_NL "\r\n" static const char GSM_OK[] TINY_GSM_PROGMEM = "OK" GSM_NL; static const char GSM_ERROR[] TINY_GSM_PROGMEM = "ERROR" GSM_NL; static uint8_t TINY_GSM_TCP_KEEP_ALIVE = 120; // status of ESP8266 station interface // 2 : ESP8266 station connected to an AP and has obtained IP // 3 : ESP8266 station created a TCP or UDP transmission // 4 : the TCP or UDP transmission of ESP8266 station disconnected // 5 : ESP8266 station did NOT connect to an AP enum RegStatus { REG_OK_IP = 2, REG_OK_TCP = 3, REG_OK_NO_TCP = 4, REG_DENIED = 5, REG_UNKNOWN = 6, }; class TinyGsmESP8266 : public TinyGsmModem, public TinyGsmWifi, public TinyGsmTCP, public TinyGsmSSL { friend class TinyGsmModem; friend class TinyGsmWifi; friend class TinyGsmTCP; friend class TinyGsmSSL; /* * Inner Client */ public: class GsmClientESP8266 : public GsmClient { friend class TinyGsmESP8266; public: GsmClientESP8266() {} explicit GsmClientESP8266(TinyGsmESP8266& modem, uint8_t mux = 0) { init(&modem, mux); } bool init(TinyGsmESP8266* modem, uint8_t mux = 0) { this->at = modem; sock_connected = false; if (mux < TINY_GSM_MUX_COUNT) { this->mux = mux; } else { this->mux = (mux % TINY_GSM_MUX_COUNT); } at->sockets[this->mux] = this; return true; } public: virtual int connect(const char* host, uint16_t port, int timeout_s) { stop(); TINY_GSM_YIELD(); rx.clear(); sock_connected = at->modemConnect(host, port, mux, false, timeout_s); return sock_connected; } TINY_GSM_CLIENT_CONNECT_OVERRIDES void stop(uint32_t maxWaitMs) { TINY_GSM_YIELD(); at->sendAT(GF("+CIPCLOSE="), mux); sock_connected = false; at->waitResponse(maxWaitMs); rx.clear(); } void stop() override { stop(5000L); } /* * Extended API */ String remoteIP() TINY_GSM_ATTR_NOT_IMPLEMENTED; }; /* * Inner Secure Client */ public: class GsmClientSecureESP8266 : public GsmClientESP8266 { public: GsmClientSecureESP8266() {} explicit GsmClientSecureESP8266(TinyGsmESP8266& modem, uint8_t mux = 0) : GsmClientESP8266(modem, mux) {} public: int connect(const char* host, uint16_t port, int timeout_s) override { stop(); TINY_GSM_YIELD(); rx.clear(); sock_connected = at->modemConnect(host, port, mux, true, timeout_s); return sock_connected; } TINY_GSM_CLIENT_CONNECT_OVERRIDES }; /* * Constructor */ public: explicit TinyGsmESP8266(Stream& stream) : stream(stream) { memset(sockets, 0, sizeof(sockets)); } /* * Basic functions */ protected: bool initImpl(const char* pin = NULL) { DBG(GF("### TinyGSM Version:"), TINYGSM_VERSION); DBG(GF("### TinyGSM Compiled Module: TinyGsmClientESP8266")); if (!testAT()) { return false; } if (pin && strlen(pin) > 0) { DBG("ESP8266 modules do not use an unlock pin!"); } sendAT(GF("E0")); // Echo Off if (waitResponse() != 1) { return false; } sendAT(GF("+CIPMUX=1")); // Enable Multiple Connections if (waitResponse() != 1) { return false; } sendAT(GF("+CWMODE=1")); // Put into "station" mode if (waitResponse() != 1) { sendAT(GF("+CWMODE_CUR=1")); // Attempt "current" station mode command // for some firmware variants if needed if (waitResponse() != 1) { return false; } } DBG(GF("### Modem:"), getModemName()); return true; } String getModemNameImpl() { return "ESP8266"; } void setBaudImpl(uint32_t baud) { sendAT(GF("+UART_CUR="), baud, "8,1,0,0"); if (waitResponse() != 1) { sendAT(GF("+UART="), baud, "8,1,0,0"); // Really old firmwares might need this // if (waitResponse() != 1) { // sendAT(GF("+IPR="), baud); // First release firmwares might need // this waitResponse(); // } } } bool factoryDefaultImpl() { sendAT(GF("+RESTORE")); return waitResponse() == 1; } String getModemInfoImpl() { sendAT(GF("+GMR")); String res; if (waitResponse(1000L, res) != 1) { return ""; } res.replace(GSM_NL "OK" GSM_NL, ""); res.replace(GSM_NL, " "); res.trim(); return res; } /* * Power functions */ protected: bool restartImpl(const char* pin = NULL) { if (!testAT()) { return false; } sendAT(GF("+RST")); if (waitResponse(10000L) != 1) { return false; } if (waitResponse(10000L, GF(GSM_NL "ready" GSM_NL)) != 1) { return false; } delay(500); return init(pin); } bool powerOffImpl() { sendAT(GF("+GSLP=0")); // Power down indefinitely - until manually reset! return waitResponse() == 1; } bool radioOffImpl() TINY_GSM_ATTR_NOT_IMPLEMENTED; bool sleepEnableImpl(bool enable = true) TINY_GSM_ATTR_NOT_AVAILABLE; bool setPhoneFunctionalityImpl(uint8_t fun, bool reset = false) TINY_GSM_ATTR_NOT_IMPLEMENTED; /* * Generic network functions */ public: RegStatus getRegistrationStatus() { sendAT(GF("+CIPSTATUS")); if (waitResponse(3000, GF("STATUS:")) != 1) return REG_UNKNOWN; int8_t status = waitResponse(GFP(GSM_ERROR), GF("2"), GF("3"), GF("4"), GF("5")); waitResponse(); // Returns an OK after the status return (RegStatus)status; } protected: int8_t getSignalQualityImpl() { sendAT(GF("+CWJAP?")); int8_t res1 = waitResponse(GF("No AP"), GF("+CWJAP:")); if (res1 != 2) { waitResponse(); sendAT(GF("+CWJAP_CUR?")); // attempt "current" as used by some firmware // versions int8_t res1 = waitResponse(GF("No AP"), GF("+CWJAP_CUR:")); if (res1 != 2) { waitResponse(); return 0; } } streamSkipUntil(','); // Skip SSID streamSkipUntil(','); // Skip BSSID/MAC address streamSkipUntil(','); // Skip Chanel number int8_t res2 = stream.parseInt(); // Read RSSI waitResponse(); // Returns an OK after the value return res2; } bool isNetworkConnectedImpl() { RegStatus s = getRegistrationStatus(); if (s == REG_OK_IP || s == REG_OK_TCP) { // with these, we're definitely connected return true; } else if (s == REG_OK_NO_TCP) { // with this, we may or may not be connected if (getLocalIP() == "") { return false; } else { return true; } } else { return false; } } String getLocalIPImpl() { // attempt with and without 'current' flag sendAT(GF("+CIPSTA?")); int8_t res1 = waitResponse(GF("ERROR"), GF("+CIPSTA:")); if (res1 != 2) { sendAT(GF("+CIPSTA_CUR?")); res1 = waitResponse(GF("ERROR"), GF("+CIPSTA_CUR:")); if (res1 != 2) { return ""; } } String res2 = stream.readStringUntil('\n'); res2.replace("ip:", ""); // newer firmwares have this res2.replace("\"", ""); res2.trim(); waitResponse(); return res2; } /* * WiFi functions */ protected: bool networkConnectImpl(const char* ssid, const char* pwd) { // attempt first without than with the 'current' flag used in some firmware // versions sendAT(GF("+CWJAP=\""), ssid, GF("\",\""), pwd, GF("\"")); if (waitResponse(30000L, GFP(GSM_OK), GF(GSM_NL "FAIL" GSM_NL)) != 1) { sendAT(GF("+CWJAP_CUR=\""), ssid, GF("\",\""), pwd, GF("\"")); if (waitResponse(30000L, GFP(GSM_OK), GF(GSM_NL "FAIL" GSM_NL)) != 1) { return false; } } return true; } bool networkDisconnectImpl() { sendAT(GF("+CWQAP")); bool retVal = waitResponse(10000L) == 1; waitResponse(GF("WIFI DISCONNECT")); return retVal; } /* * Client related functions */ protected: bool modemConnect(const char* host, uint16_t port, uint8_t mux, bool ssl = false, int timeout_s = 75) { uint32_t timeout_ms = ((uint32_t)timeout_s) * 1000; if (ssl) { sendAT(GF("+CIPSSLSIZE=4096")); waitResponse(); } sendAT(GF("+CIPSTART="), mux, ',', ssl ? GF("\"SSL") : GF("\"TCP"), GF("\",\""), host, GF("\","), port, GF(","), TINY_GSM_TCP_KEEP_ALIVE); // TODO(?): Check mux int8_t rsp = waitResponse(timeout_ms, GFP(GSM_OK), GFP(GSM_ERROR), GF("ALREADY CONNECT")); // if (rsp == 3) waitResponse(); // May return "ERROR" after the "ALREADY CONNECT" return (1 == rsp); } int16_t modemSend(const void* buff, size_t len, uint8_t mux) { sendAT(GF("+CIPSEND="), mux, ',', (uint16_t)len); if (waitResponse(GF(">")) != 1) { return 0; } stream.write(reinterpret_cast(buff), len); stream.flush(); if (waitResponse(10000L, GF(GSM_NL "SEND OK" GSM_NL)) != 1) { return 0; } return len; } bool modemGetConnected(uint8_t mux) { sendAT(GF("+CIPSTATUS")); if (waitResponse(3000, GF("STATUS:")) != 1) { return false; } int8_t status = waitResponse(GFP(GSM_ERROR), GF("2"), GF("3"), GF("4"), GF("5")); if (status != 3) { // if the status is anything but 3, there are no connections open waitResponse(); // Returns an OK after the status for (int muxNo = 0; muxNo < TINY_GSM_MUX_COUNT; muxNo++) { if (sockets[muxNo]) { sockets[muxNo]->sock_connected = false; } } return false; } bool verified_connections[TINY_GSM_MUX_COUNT] = {0, 0, 0, 0, 0}; for (int muxNo = 0; muxNo < TINY_GSM_MUX_COUNT; muxNo++) { uint8_t has_status = waitResponse(GF("+CIPSTATUS:"), GFP(GSM_OK), GFP(GSM_ERROR)); if (has_status == 1) { int8_t returned_mux = streamGetIntBefore(','); streamSkipUntil(','); // Skip mux streamSkipUntil(','); // Skip type streamSkipUntil(','); // Skip remote IP streamSkipUntil(','); // Skip remote port streamSkipUntil(','); // Skip local port streamSkipUntil('\n'); // Skip client/server type verified_connections[returned_mux] = 1; } if (has_status == 2) break; // once we get to the ok, stop } for (int muxNo = 0; muxNo < TINY_GSM_MUX_COUNT; muxNo++) { if (sockets[muxNo]) { sockets[muxNo]->sock_connected = verified_connections[muxNo]; } } return verified_connections[mux]; } /* * Utilities */ public: // TODO(vshymanskyy): Optimize this! int8_t waitResponse(uint32_t timeout_ms, String& data, GsmConstStr r1 = GFP(GSM_OK), GsmConstStr r2 = GFP(GSM_ERROR), GsmConstStr r3 = NULL, GsmConstStr r4 = NULL, GsmConstStr r5 = NULL) { /*String r1s(r1); r1s.trim(); String r2s(r2); r2s.trim(); String r3s(r3); r3s.trim(); String r4s(r4); r4s.trim(); String r5s(r5); r5s.trim(); DBG("### ..:", r1s, ",", r2s, ",", r3s, ",", r4s, ",", r5s);*/ data.reserve(64); uint8_t index = 0; uint32_t startMillis = millis(); do { TINY_GSM_YIELD(); while (stream.available() > 0) { TINY_GSM_YIELD(); int8_t a = stream.read(); if (a <= 0) continue; // Skip 0x00 bytes, just in case data += static_cast(a); if (r1 && data.endsWith(r1)) { index = 1; goto finish; } else if (r2 && data.endsWith(r2)) { index = 2; goto finish; } else if (r3 && data.endsWith(r3)) { index = 3; goto finish; } else if (r4 && data.endsWith(r4)) { index = 4; goto finish; } else if (r5 && data.endsWith(r5)) { index = 5; goto finish; } else if (data.endsWith(GF("+IPD,"))) { int8_t mux = streamGetIntBefore(','); int16_t len = streamGetIntBefore(':'); int16_t len_orig = len; if (mux >= 0 && mux < TINY_GSM_MUX_COUNT && sockets[mux]) { if (len > sockets[mux]->rx.free()) { DBG("### Buffer overflow: ", len, "received vs", sockets[mux]->rx.free(), "available"); } else { // DBG("### Got Data: ", len, "on", mux); } while (len--) { moveCharFromStreamToFifo(mux); } // TODO(SRGDamia1): deal with buffer overflow/missed characters if (len_orig > sockets[mux]->available()) { DBG("### Fewer characters received than expected: ", sockets[mux]->available(), " vs ", len_orig); } } data = ""; } else if (data.endsWith(GF("CLOSED"))) { int8_t muxStart = TinyGsmMax(0, data.lastIndexOf(GSM_NL, data.length() - 8)); int8_t coma = data.indexOf(',', muxStart); int8_t mux = data.substring(muxStart, coma).toInt(); if (mux >= 0 && mux < TINY_GSM_MUX_COUNT && sockets[mux]) { sockets[mux]->sock_connected = false; } data = ""; DBG("### Closed: ", mux); } } } while (millis() - startMillis < timeout_ms); finish: if (!index) { data.trim(); if (data.length()) { DBG("### Unhandled:", data); } data = ""; } // data.replace(GSM_NL, "/"); // DBG('<', index, '>', data); return index; } int8_t waitResponse(uint32_t timeout_ms, GsmConstStr r1 = GFP(GSM_OK), GsmConstStr r2 = GFP(GSM_ERROR), GsmConstStr r3 = NULL, GsmConstStr r4 = NULL, GsmConstStr r5 = NULL) { String data; return waitResponse(timeout_ms, data, r1, r2, r3, r4, r5); } int8_t waitResponse(GsmConstStr r1 = GFP(GSM_OK), GsmConstStr r2 = GFP(GSM_ERROR), GsmConstStr r3 = NULL, GsmConstStr r4 = NULL, GsmConstStr r5 = NULL) { return waitResponse(1000, r1, r2, r3, r4, r5); } public: Stream& stream; protected: GsmClientESP8266* sockets[TINY_GSM_MUX_COUNT]; const char* gsmNL = GSM_NL; }; #endif // SRC_TINYGSMCLIENTESP8266_H_