/** * @file TinyGsmClientSIM800.h * @author Volodymyr Shymanskyy * @license LGPL-3.0 * @copyright Copyright (c) 2016 Volodymyr Shymanskyy * @date Nov 2016 */ #ifndef TinyGsmClientSIM800_h #define TinyGsmClientSIM800_h //#pragma message("TinyGSM: TinyGsmClientSIM800") //#define TINY_GSM_DEBUG Serial //#define TINY_GSM_USE_HEX #if !defined(TINY_GSM_RX_BUFFER) #define TINY_GSM_RX_BUFFER 64 #endif #define TINY_GSM_MUX_COUNT 5 #include #define GSM_NL "\r\n" static const char GSM_OK[] TINY_GSM_PROGMEM = "OK" GSM_NL; static const char GSM_ERROR[] TINY_GSM_PROGMEM = "ERROR" GSM_NL; enum SimStatus { SIM_ERROR = 0, SIM_READY = 1, SIM_LOCKED = 2, }; enum RegStatus { REG_UNREGISTERED = 0, REG_SEARCHING = 2, REG_DENIED = 3, REG_OK_HOME = 1, REG_OK_ROAMING = 5, REG_UNKNOWN = 4, }; enum TinyGSMDateTimeFormat { DATE_FULL = 0, DATE_TIME = 1, DATE_DATE = 2 }; class TinyGsmSim800 { public: class GsmClient : public Client { friend class TinyGsmSim800; typedef TinyGsmFifo RxFifo; public: GsmClient() {} GsmClient(TinyGsmSim800& modem, uint8_t mux = 1) { init(&modem, mux); } bool init(TinyGsmSim800* modem, uint8_t mux = 1) { this->at = modem; this->mux = mux; sock_available = 0; prev_check = 0; sock_connected = false; got_data = false; at->sockets[mux] = this; return true; } public: virtual int connect(const char *host, uint16_t port, int timeout_s) { stop(); TINY_GSM_YIELD(); rx.clear(); sock_connected = at->modemConnect(host, port, mux, false, timeout_s); return sock_connected; } TINY_GSM_CLIENT_CONNECT_OVERLOADS() virtual void stop() { TINY_GSM_YIELD(); // Read and dump anything remaining in the modem's internal buffer. // The socket will appear open in response to connected() even after it // closes until all data is read from the buffer. // Doing it this way allows the external mcu to find and get all of the data // that it wants from the socket even if it was closed externally. rx.clear(); at->maintain(); while (sock_available > 0) { at->modemRead(TinyGsmMin((uint16_t)rx.free(), sock_available), mux); rx.clear(); at->maintain(); } at->sendAT(GF("+CIPCLOSE="), mux, GF(",1")); // Quick close sock_connected = false; at->waitResponse(); } TINY_GSM_CLIENT_WRITE() TINY_GSM_CLIENT_AVAILABLE_WITH_BUFFER_CHECK() TINY_GSM_CLIENT_READ_WITH_BUFFER_CHECK() TINY_GSM_CLIENT_PEEK_FLUSH_CONNECTED() /* * Extended API */ String remoteIP() TINY_GSM_ATTR_NOT_IMPLEMENTED; private: TinyGsmSim800* at; uint8_t mux; uint16_t sock_available; uint32_t prev_check; bool sock_connected; bool got_data; RxFifo rx; }; class GsmClientSecure : public GsmClient { public: GsmClientSecure() {} GsmClientSecure(TinyGsmSim800& modem, uint8_t mux = 1) : GsmClient(modem, mux) {} public: virtual int connect(const char *host, uint16_t port, int timeout_s) { stop(); TINY_GSM_YIELD(); rx.clear(); sock_connected = at->modemConnect(host, port, mux, true, timeout_s); return sock_connected; } }; public: TinyGsmSim800(Stream& stream) : stream(stream) { memset(sockets, 0, sizeof(sockets)); } /* * Basic functions */ bool begin(const char* pin = NULL) { return init(pin); } bool init(const char* pin = NULL) { DBG(GF("### TinyGSM Version:"), TINYGSM_VERSION); if (!testAT()) { return false; } sendAT(GF("&FZ")); // Factory + Reset waitResponse(); sendAT(GF("E0")); // Echo Off if (waitResponse() != 1) { return false; } DBG(GF("### Modem:"), getModemName()); getSimStatus(); return true; } String getModemName() { #if defined(TINY_GSM_MODEM_SIM800) return "SIMCom SIM800"; #elif defined(TINY_GSM_MODEM_SIM808) return "SIMCom SIM808"; #elif defined(TINY_GSM_MODEM_SIM868) return "SIMCom SIM868"; #elif defined(TINY_GSM_MODEM_SIM900) return "SIMCom SIM900"; #endif return "SIMCom SIM800"; } TINY_GSM_MODEM_SET_BAUD_IPR() TINY_GSM_MODEM_TEST_AT() TINY_GSM_MODEM_MAINTAIN_CHECK_SOCKS() bool factoryDefault() { sendAT(GF("&FZE0&W")); // Factory + Reset + Echo Off + Write waitResponse(); sendAT(GF("+IPR=0")); // Auto-baud waitResponse(); sendAT(GF("+IFC=0,0")); // No Flow Control waitResponse(); sendAT(GF("+ICF=3,3")); // 8 data 0 parity 1 stop waitResponse(); sendAT(GF("+CSCLK=0")); // Disable Slow Clock waitResponse(); sendAT(GF("&W")); // Write configuration return waitResponse() == 1; } TINY_GSM_MODEM_GET_INFO_ATI() bool hasSSL() { #if defined(TINY_GSM_MODEM_SIM900) return false; #else sendAT(GF("+CIPSSL=?")); if (waitResponse(GF(GSM_NL "+CIPSSL:")) != 1) { return false; } return waitResponse() == 1; #endif } bool hasWifi() { return false; } bool hasGPRS() { return true; } /* * Power functions */ bool restart() { if (!testAT()) { return false; } //Enable Local Time Stamp for getting network time // TODO: Find a better place for this sendAT(GF("+CLTS=1")); if (waitResponse(10000L) != 1) { return false; } sendAT(GF("&W")); waitResponse(); sendAT(GF("+CFUN=0")); if (waitResponse(10000L) != 1) { return false; } sendAT(GF("+CFUN=1,1")); if (waitResponse(10000L) != 1) { return false; } delay(3000); return init(); } bool poweroff() { sendAT(GF("+CPOWD=1")); return waitResponse(GF("NORMAL POWER DOWN")) == 1; } bool radioOff() { sendAT(GF("+CFUN=0")); if (waitResponse(10000L) != 1) { return false; } delay(3000); return true; } /* During sleep, the SIM800 module has its serial communication disabled. In order to reestablish communication pull the DRT-pin of the SIM800 module LOW for at least 50ms. Then use this function to disable sleep mode. The DTR-pin can then be released again. */ bool sleepEnable(bool enable = true) { sendAT(GF("+CSCLK="), enable); return waitResponse() == 1; } /* * SIM card functions */ TINY_GSM_MODEM_SIM_UNLOCK_CPIN() TINY_GSM_MODEM_GET_SIMCCID_CCID() TINY_GSM_MODEM_GET_IMEI_GSN() SimStatus getSimStatus(unsigned long timeout_ms = 10000L) { for (unsigned long start = millis(); millis() - start < timeout_ms; ) { sendAT(GF("+CPIN?")); if (waitResponse(GF(GSM_NL "+CPIN:")) != 1) { delay(1000); continue; } int status = waitResponse(GF("READY"), GF("SIM PIN"), GF("SIM PUK"), GF("NOT INSERTED")); waitResponse(); switch (status) { case 2: case 3: return SIM_LOCKED; case 1: return SIM_READY; default: return SIM_ERROR; } } return SIM_ERROR; } TINY_GSM_MODEM_GET_REGISTRATION_XREG(CREG) TINY_GSM_MODEM_GET_OPERATOR_COPS() /* * Generic network functions */ TINY_GSM_MODEM_GET_CSQ() bool isNetworkConnected() { RegStatus s = getRegistrationStatus(); return (s == REG_OK_HOME || s == REG_OK_ROAMING); } TINY_GSM_MODEM_WAIT_FOR_NETWORK() /* * GPRS functions */ bool gprsConnect(const char* apn, const char* user = NULL, const char* pwd = NULL) { gprsDisconnect(); // Set the Bearer for the IP sendAT(GF("+SAPBR=3,1,\"Contype\",\"GPRS\"")); // Set the connection type to GPRS waitResponse(); sendAT(GF("+SAPBR=3,1,\"APN\",\""), apn, '"'); // Set the APN waitResponse(); if (user && strlen(user) > 0) { sendAT(GF("+SAPBR=3,1,\"USER\",\""), user, '"'); // Set the user name waitResponse(); } if (pwd && strlen(pwd) > 0) { sendAT(GF("+SAPBR=3,1,\"PWD\",\""), pwd, '"'); // Set the password waitResponse(); } // Define the PDP context sendAT(GF("+CGDCONT=1,\"IP\",\""), apn, '"'); waitResponse(); // Activate the PDP context sendAT(GF("+CGACT=1,1")); waitResponse(60000L); // Open the definied GPRS bearer context sendAT(GF("+SAPBR=1,1")); waitResponse(85000L); // Query the GPRS bearer context status sendAT(GF("+SAPBR=2,1")); if (waitResponse(30000L) != 1) return false; // Attach to GPRS sendAT(GF("+CGATT=1")); if (waitResponse(60000L) != 1) return false; // TODO: wait AT+CGATT? // Set to multi-IP sendAT(GF("+CIPMUX=1")); if (waitResponse() != 1) { return false; } // Put in "quick send" mode (thus no extra "Send OK") sendAT(GF("+CIPQSEND=1")); if (waitResponse() != 1) { return false; } // Set to get data manually sendAT(GF("+CIPRXGET=1")); if (waitResponse() != 1) { return false; } // Start Task and Set APN, USER NAME, PASSWORD sendAT(GF("+CSTT=\""), apn, GF("\",\""), user, GF("\",\""), pwd, GF("\"")); if (waitResponse(60000L) != 1) { return false; } // Bring Up Wireless Connection with GPRS or CSD sendAT(GF("+CIICR")); if (waitResponse(60000L) != 1) { return false; } // Get Local IP Address, only assigned after connection sendAT(GF("+CIFSR;E0")); if (waitResponse(10000L) != 1) { return false; } // Configure Domain Name Server (DNS) sendAT(GF("+CDNSCFG=\"8.8.8.8\",\"8.8.4.4\"")); if (waitResponse() != 1) { return false; } return true; } bool gprsDisconnect() { // Shut the TCP/IP connection // CIPSHUT will close *all* open connections sendAT(GF("+CIPSHUT")); if (waitResponse(60000L) != 1) return false; sendAT(GF("+CGATT=0")); // Deactivate the bearer context if (waitResponse(60000L) != 1) return false; return true; } bool isGprsConnected() { sendAT(GF("+CGATT?")); if (waitResponse(GF(GSM_NL "+CGATT:")) != 1) { return false; } int res = stream.readStringUntil('\n').toInt(); waitResponse(); if (res != 1) return false; sendAT(GF("+CIFSR;E0")); // Another option is to use AT+CGPADDR=1 if (waitResponse() != 1) return false; return true; } /* * IP Address functions */ String getLocalIP() { sendAT(GF("+CIFSR;E0")); String res; if (waitResponse(10000L, res) != 1) { return ""; } res.replace(GSM_NL "OK" GSM_NL, ""); res.replace(GSM_NL, ""); res.trim(); return res; } IPAddress localIP() { return TinyGsmIpFromString(getLocalIP()); } /* * Phone Call functions */ bool setGsmBusy(bool busy = true) { sendAT(GF("+GSMBUSY="), busy ? 1 : 0); return waitResponse() == 1; } bool callAnswer() { sendAT(GF("A")); return waitResponse() == 1; } // Returns true on pick-up, false on error/busy bool callNumber(const String& number) { if (number == GF("last")) { sendAT(GF("DL")); } else { sendAT(GF("D"), number, ";"); } int status = waitResponse(60000L, GFP(GSM_OK), GF("BUSY" GSM_NL), GF("NO ANSWER" GSM_NL), GF("NO CARRIER" GSM_NL)); switch (status) { case 1: return true; case 2: case 3: return false; default: return false; } } bool callHangup() { sendAT(GF("H")); return waitResponse() == 1; } // 0-9,*,#,A,B,C,D bool dtmfSend(char cmd, int duration_ms = 100) { duration_ms = constrain(duration_ms, 100, 1000); sendAT(GF("+VTD="), duration_ms / 100); // VTD accepts in 1/10 of a second waitResponse(); sendAT(GF("+VTS="), cmd); return waitResponse(10000L) == 1; } /* * Messaging functions */ String sendUSSD(const String& code) { sendAT(GF("+CMGF=1")); waitResponse(); sendAT(GF("+CSCS=\"HEX\"")); waitResponse(); sendAT(GF("+CUSD=1,\""), code, GF("\"")); if (waitResponse() != 1) { return ""; } if (waitResponse(10000L, GF(GSM_NL "+CUSD:")) != 1) { return ""; } stream.readStringUntil('"'); String hex = stream.readStringUntil('"'); stream.readStringUntil(','); int dcs = stream.readStringUntil('\n').toInt(); if (dcs == 15) { return TinyGsmDecodeHex8bit(hex); } else if (dcs == 72) { return TinyGsmDecodeHex16bit(hex); } else { return hex; } } bool sendSMS(const String& number, const String& text) { sendAT(GF("+CMGF=1")); waitResponse(); //Set GSM 7 bit default alphabet (3GPP TS 23.038) sendAT(GF("+CSCS=\"GSM\"")); waitResponse(); sendAT(GF("+CMGS=\""), number, GF("\"")); if (waitResponse(GF(">")) != 1) { return false; } stream.print(text); stream.write((char)0x1A); stream.flush(); return waitResponse(60000L) == 1; } bool sendSMS_UTF16(const String& number, const void* text, size_t len) { sendAT(GF("+CMGF=1")); waitResponse(); sendAT(GF("+CSCS=\"HEX\"")); waitResponse(); sendAT(GF("+CSMP=17,167,0,8")); waitResponse(); sendAT(GF("+CMGS=\""), number, GF("\"")); if (waitResponse(GF(">")) != 1) { return false; } uint16_t* t = (uint16_t*)text; for (size_t i=0; i> 8; if (c < 0x10) { stream.print('0'); } stream.print(c, HEX); c = t[i] & 0xFF; if (c < 0x10) { stream.print('0'); } stream.print(c, HEX); } stream.write((char)0x1A); stream.flush(); return waitResponse(60000L) == 1; } /* * Location functions */ String getGsmLocation() { sendAT(GF("+CIPGSMLOC=1,1")); if (waitResponse(10000L, GF(GSM_NL "+CIPGSMLOC:")) != 1) { return ""; } String res = stream.readStringUntil('\n'); waitResponse(); res.trim(); return res; } /* * Time functions */ String getGSMDateTime(TinyGSMDateTimeFormat format) { sendAT(GF("+CCLK?")); if (waitResponse(2000L, GF(GSM_NL "+CCLK: \"")) != 1) { return ""; } String res; switch(format) { case DATE_FULL: res = stream.readStringUntil('"'); break; case DATE_TIME: streamSkipUntil(','); res = stream.readStringUntil('"'); break; case DATE_DATE: res = stream.readStringUntil(','); break; } return res; } /* * Battery & temperature functions */ // Use: float vBatt = modem.getBattVoltage() / 1000.0; uint16_t getBattVoltage() { sendAT(GF("+CBC")); if (waitResponse(GF(GSM_NL "+CBC:")) != 1) { return 0; } streamSkipUntil(','); // Skip battery charge status streamSkipUntil(','); // Skip battery charge level // return voltage in mV uint16_t res = stream.readStringUntil(',').toInt(); // Wait for final OK waitResponse(); return res; } int8_t getBattPercent() { sendAT(GF("+CBC")); if (waitResponse(GF(GSM_NL "+CBC:")) != 1) { return false; } streamSkipUntil(','); // Skip battery charge status // Read battery charge level int res = stream.readStringUntil(',').toInt(); // Wait for final OK waitResponse(); return res; } uint8_t getBattChargeState() { sendAT(GF("+CBC?")); if (waitResponse(GF(GSM_NL "+CBC:")) != 1) { return false; } // Read battery charge status int res = stream.readStringUntil(',').toInt(); // Wait for final OK waitResponse(); return res; } bool getBattStats(uint8_t &chargeState, int8_t &percent, uint16_t &milliVolts) { sendAT(GF("+CBC?")); if (waitResponse(GF(GSM_NL "+CBC:")) != 1) { return false; } chargeState = stream.readStringUntil(',').toInt(); percent = stream.readStringUntil(',').toInt(); milliVolts = stream.readStringUntil('\n').toInt(); // Wait for final OK waitResponse(); return true; } float getTemperature() TINY_GSM_ATTR_NOT_AVAILABLE; /* * Client related functions */ protected: bool modemConnect(const char* host, uint16_t port, uint8_t mux, bool ssl = false, int timeout_s = 75) { int rsp; uint32_t timeout_ms = ((uint32_t)timeout_s)*1000; #if !defined(TINY_GSM_MODEM_SIM900) sendAT(GF("+CIPSSL="), ssl); rsp = waitResponse(); if (ssl && rsp != 1) { return false; } #endif sendAT(GF("+CIPSTART="), mux, ',', GF("\"TCP"), GF("\",\""), host, GF("\","), port); rsp = waitResponse(timeout_ms, GF("CONNECT OK" GSM_NL), GF("CONNECT FAIL" GSM_NL), GF("ALREADY CONNECT" GSM_NL), GF("ERROR" GSM_NL), GF("CLOSE OK" GSM_NL) // Happens when HTTPS handshake fails ); return (1 == rsp); } int16_t modemSend(const void* buff, size_t len, uint8_t mux) { sendAT(GF("+CIPSEND="), mux, ',', len); if (waitResponse(GF(">")) != 1) { return 0; } stream.write((uint8_t*)buff, len); stream.flush(); if (waitResponse(GF(GSM_NL "DATA ACCEPT:")) != 1) { return 0; } streamSkipUntil(','); // Skip mux return stream.readStringUntil('\n').toInt(); } size_t modemRead(size_t size, uint8_t mux) { #ifdef TINY_GSM_USE_HEX sendAT(GF("+CIPRXGET=3,"), mux, ',', size); if (waitResponse(GF("+CIPRXGET:")) != 1) { return 0; } #else sendAT(GF("+CIPRXGET=2,"), mux, ',', size); if (waitResponse(GF("+CIPRXGET:")) != 1) { return 0; } #endif streamSkipUntil(','); // Skip Rx mode 2/normal or 3/HEX streamSkipUntil(','); // Skip mux size_t len_requested = stream.readStringUntil(',').toInt(); // ^^ Requested number of data bytes (1-1460 bytes)to be read size_t len_confirmed = stream.readStringUntil('\n').toInt(); if (len_confirmed < len_requested) { DBG(len_requested - len_confirmed, "fewer bytes confirmed than requested!"); } sockets[mux]->sock_available = len_confirmed; // ^^ Confirmed number of data bytes to be read, which may be less than requested. // 0 indicates that no data can be read. for (size_t i=0; i_timeout)) { TINY_GSM_YIELD(); } char buf[4] = { 0, }; buf[0] = stream.read(); buf[1] = stream.read(); char c = strtol(buf, NULL, 16); #else while (!stream.available() && (millis() - startMillis < sockets[mux]->_timeout)) { TINY_GSM_YIELD(); } char c = stream.read(); #endif sockets[mux]->rx.put(c); } waitResponse(); DBG("### READ:", TinyGsmMin(len_confirmed, len_requested), "from", mux); return TinyGsmMin(len_confirmed, len_requested); } size_t modemGetAvailable(uint8_t mux) { sendAT(GF("+CIPRXGET=4,"), mux); size_t result = 0; if (waitResponse(GF("+CIPRXGET:")) == 1) { streamSkipUntil(','); // Skip mode 4 streamSkipUntil(','); // Skip mux result = stream.readStringUntil('\n').toInt(); waitResponse(); } if (!result) { sockets[mux]->sock_connected = modemGetConnected(mux); } return result; } bool modemGetConnected(uint8_t mux) { sendAT(GF("+CIPSTATUS="), mux); int res = waitResponse(GF(",\"CONNECTED\""), GF(",\"CLOSED\""), GF(",\"CLOSING\""), GF(",\"INITIAL\"")); waitResponse(); return 1 == res; } public: /* Utilities */ TINY_GSM_MODEM_STREAM_UTILITIES() // TODO: Optimize this! uint8_t waitResponse(uint32_t timeout_ms, String& data, GsmConstStr r1=GFP(GSM_OK), GsmConstStr r2=GFP(GSM_ERROR), GsmConstStr r3=NULL, GsmConstStr r4=NULL, GsmConstStr r5=NULL) { /*String r1s(r1); r1s.trim(); String r2s(r2); r2s.trim(); String r3s(r3); r3s.trim(); String r4s(r4); r4s.trim(); String r5s(r5); r5s.trim(); DBG("### ..:", r1s, ",", r2s, ",", r3s, ",", r4s, ",", r5s);*/ data.reserve(64); int index = 0; unsigned long startMillis = millis(); do { TINY_GSM_YIELD(); while (stream.available() > 0) { int a = stream.read(); if (a <= 0) continue; // Skip 0x00 bytes, just in case data += (char)a; if (r1 && data.endsWith(r1)) { index = 1; goto finish; } else if (r2 && data.endsWith(r2)) { index = 2; goto finish; } else if (r3 && data.endsWith(r3)) { index = 3; goto finish; } else if (r4 && data.endsWith(r4)) { index = 4; goto finish; } else if (r5 && data.endsWith(r5)) { index = 5; goto finish; } else if (data.endsWith(GF(GSM_NL "+CIPRXGET:"))) { String mode = stream.readStringUntil(','); if (mode.toInt() == 1) { int mux = stream.readStringUntil('\n').toInt(); if (mux >= 0 && mux < TINY_GSM_MUX_COUNT && sockets[mux]) { sockets[mux]->got_data = true; } data = ""; DBG("### Got Data:", mux); } else { data += mode; } } else if (data.endsWith(GF(GSM_NL "+RECEIVE:"))) { int mux = stream.readStringUntil(',').toInt(); int len = stream.readStringUntil('\n').toInt(); if (mux >= 0 && mux < TINY_GSM_MUX_COUNT && sockets[mux]) { sockets[mux]->got_data = true; sockets[mux]->sock_available = len; } data = ""; DBG("### Got Data:", len, "on", mux); } else if (data.endsWith(GF("CLOSED" GSM_NL))) { int nl = data.lastIndexOf(GSM_NL, data.length()-8); int coma = data.indexOf(',', nl+2); int mux = data.substring(nl+2, coma).toInt(); if (mux >= 0 && mux < TINY_GSM_MUX_COUNT && sockets[mux]) { sockets[mux]->sock_connected = false; } data = ""; DBG("### Closed: ", mux); } } } while (millis() - startMillis < timeout_ms); finish: if (!index) { data.trim(); if (data.length()) { DBG("### Unhandled:", data); } data = ""; } //DBG('<', index, '>'); return index; } uint8_t waitResponse(uint32_t timeout_ms, GsmConstStr r1=GFP(GSM_OK), GsmConstStr r2=GFP(GSM_ERROR), GsmConstStr r3=NULL, GsmConstStr r4=NULL, GsmConstStr r5=NULL) { String data; return waitResponse(timeout_ms, data, r1, r2, r3, r4, r5); } uint8_t waitResponse(GsmConstStr r1=GFP(GSM_OK), GsmConstStr r2=GFP(GSM_ERROR), GsmConstStr r3=NULL, GsmConstStr r4=NULL, GsmConstStr r5=NULL) { return waitResponse(1000, r1, r2, r3, r4, r5); } public: Stream& stream; protected: GsmClient* sockets[TINY_GSM_MUX_COUNT]; }; #endif