You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

694 lines
20 KiB

/**
* @file TinyGsmClientSIM7000.h
* @author Volodymyr Shymanskyy
* @license LGPL-3.0
* @copyright Copyright (c) 2016 Volodymyr Shymanskyy
* @date Nov 2016
*/
#ifndef SRC_TINYGSMCLIENTSIM7000_H_
#define SRC_TINYGSMCLIENTSIM7000_H_
// #define TINY_GSM_DEBUG Serial
// #define TINY_GSM_USE_HEX
#define TINY_GSM_MUX_COUNT 8
#include "TinyGsmBattery.tpp"
#include "TinyGsmGPRS.tpp"
#include "TinyGsmGPS.tpp"
#include "TinyGsmModem.tpp"
#include "TinyGsmSMS.tpp"
#include "TinyGsmTCP.tpp"
#include "TinyGsmTime.tpp"
#define GSM_NL "\r\n"
static const char GSM_OK[] TINY_GSM_PROGMEM = "OK" GSM_NL;
static const char GSM_ERROR[] TINY_GSM_PROGMEM = "ERROR" GSM_NL;
static const char GSM_CME_ERROR[] TINY_GSM_PROGMEM = GSM_NL "+CME ERROR:";
enum RegStatus {
REG_NO_RESULT = -1,
REG_UNREGISTERED = 0,
REG_SEARCHING = 2,
REG_DENIED = 3,
REG_OK_HOME = 1,
REG_OK_ROAMING = 5,
REG_UNKNOWN = 4,
};
class TinyGsmSim7000 : public TinyGsmModem<TinyGsmSim7000>,
public TinyGsmGPRS<TinyGsmSim7000>,
public TinyGsmTCP<TinyGsmSim7000, READ_AND_CHECK_SIZE,
TINY_GSM_MUX_COUNT>,
public TinyGsmSMS<TinyGsmSim7000>,
public TinyGsmGPS<TinyGsmSim7000>,
public TinyGsmTime<TinyGsmSim7000>,
public TinyGsmBattery<TinyGsmSim7000> {
friend class TinyGsmModem<TinyGsmSim7000>;
friend class TinyGsmGPRS<TinyGsmSim7000>;
friend class TinyGsmTCP<TinyGsmSim7000, READ_AND_CHECK_SIZE,
TINY_GSM_MUX_COUNT>;
friend class TinyGsmSMS<TinyGsmSim7000>;
friend class TinyGsmGPS<TinyGsmSim7000>;
friend class TinyGsmTime<TinyGsmSim7000>;
friend class TinyGsmBattery<TinyGsmSim7000>;
/*
* Inner Client
*/
public:
class GsmClientSim7000 : public GsmClient {
friend class TinyGsmSim7000;
public:
GsmClientSim7000() {}
explicit GsmClientSim7000(TinyGsmSim7000& modem, uint8_t mux = 1) {
init(&modem, mux);
}
bool init(TinyGsmSim7000* modem, uint8_t mux = 1) {
this->at = modem;
this->mux = mux;
sock_available = 0;
prev_check = 0;
sock_connected = false;
got_data = false;
at->sockets[mux] = this;
return true;
}
public:
virtual int connect(const char* host, uint16_t port, int timeout_s) {
stop();
TINY_GSM_YIELD();
rx.clear();
sock_connected = at->modemConnect(host, port, mux, false, timeout_s);
return sock_connected;
}
TINY_GSM_CLIENT_CONNECT_OVERRIDES
virtual void stop(uint32_t maxWaitMs) {
dumpModemBuffer(maxWaitMs);
at->sendAT(GF("+CIPCLOSE="), mux);
sock_connected = false;
at->waitResponse();
}
void stop() override {
stop(15000L);
}
/*
* Extended API
*/
String remoteIP() TINY_GSM_ATTR_NOT_IMPLEMENTED;
};
/*
* Inner Secure Client
*/
/*TODO(?))
class GsmClientSecureSIM7000 : public GsmClientSim7000
{
public:
GsmClientSecure() {}
GsmClientSecure(TinyGsmSim7000& modem, uint8_t mux = 1)
: public GsmClient(modem, mux)
{}
public:
int connect(const char* host, uint16_t port, int timeout_s) override {
stop();
TINY_GSM_YIELD();
rx.clear();
sock_connected = at->modemConnect(host, port, mux, true, timeout_s);
return sock_connected;
}
TINY_GSM_CLIENT_CONNECT_OVERRIDES
};
*/
/*
* Constructor
*/
public:
explicit TinyGsmSim7000(Stream& stream) : stream(stream) {
memset(sockets, 0, sizeof(sockets));
}
/*
* Basic functions
*/
protected:
bool initImpl(const char* pin = NULL) {
DBG(GF("### TinyGSM Version:"), TINYGSM_VERSION);
if (!testAT()) { return false; }
sendAT(GF("E0")); // Echo Off
if (waitResponse() != 1) { return false; }
#ifdef TINY_GSM_DEBUG
sendAT(GF("+CMEE=2")); // turn on verbose error codes
#else
sendAT(GF("+CMEE=0")); // turn off error codes
#endif
waitResponse();
DBG(GF("### Modem:"), getModemName());
// Enable Local Time Stamp for getting network time
sendAT(GF("+CLTS=1"));
if (waitResponse(10000L) != 1) { return false; }
// Enable battery checks
sendAT(GF("+CBATCHK=1"));
if (waitResponse() != 1) { return false; }
int ret = getSimStatus();
// if the sim isn't ready and a pin has been provided, try to unlock the sim
if (ret != SIM_READY && pin != NULL && strlen(pin) > 0) {
simUnlock(pin);
return (getSimStatus() == SIM_READY);
} else {
// if the sim is ready, or it's locked but no pin has been provided,
// return true
return (ret == SIM_READY || ret == SIM_LOCKED);
}
}
String getModemNameImpl() {
String name = "SIMCom SIM7000";
sendAT(GF("+GMM"));
String res2;
if (waitResponse(1000L, res2) != 1) { return name; }
res2.replace(GSM_NL "OK" GSM_NL, "");
res2.replace("_", " ");
res2.trim();
name = res2;
DBG("### Modem:", name);
return name;
}
bool factoryDefaultImpl() { // these commands aren't supported
return false;
}
/*
* Power functions
*/
protected:
bool restartImpl() {
sendAT(GF("+CFUN=0"));
if (waitResponse(10000L) != 1) { return false; }
sendAT(GF("+CFUN=1,1"));
if (waitResponse(10000L) != 1) { return false; }
waitResponse(60000L, GF("SMS Ready"));
return init();
}
bool powerOffImpl() {
sendAT(GF("+CPOWD=1"));
return waitResponse(GF("NORMAL POWER DOWN")) == 1;
}
// During sleep, the SIM7000 module has its serial communication disabled.
// In order to reestablish communication pull the DRT-pin of the SIM7000
// module LOW for at least 50ms. Then use this function to disable sleep mode.
// The DTR-pin can then be released again.
bool sleepEnableImpl(bool enable = true) {
sendAT(GF("+CSCLK="), enable);
return waitResponse() == 1;
}
/*
* Generic network functions
*/
public:
RegStatus getRegistrationStatus() {
return (RegStatus)getRegistrationStatusXREG("CEREG");
}
protected:
bool isNetworkConnectedImpl() {
RegStatus s = getRegistrationStatus();
return (s == REG_OK_HOME || s == REG_OK_ROAMING);
}
public:
String getNetworkModes() {
sendAT(GF("+CNMP=?"));
if (waitResponse(GF(GSM_NL "+CNMP:")) != 1) { return ""; }
String res = stream.readStringUntil('\n');
waitResponse();
return res;
}
String setNetworkMode(uint8_t mode) {
sendAT(GF("+CNMP="), mode);
if (waitResponse(GF(GSM_NL "+CNMP:")) != 1) { return "OK"; }
String res = stream.readStringUntil('\n');
waitResponse();
return res;
}
String getPreferredModes() {
sendAT(GF("+CMNB=?"));
if (waitResponse(GF(GSM_NL "+CMNB:")) != 1) { return ""; }
String res = stream.readStringUntil('\n');
waitResponse();
return res;
}
String setPreferredMode(uint8_t mode) {
sendAT(GF("+CMNB="), mode);
if (waitResponse(GF(GSM_NL "+CMNB:")) != 1) { return "OK"; }
String res = stream.readStringUntil('\n');
waitResponse();
return res;
}
String getLocalIPImpl() {
sendAT(GF("+CIFSR;E0"));
String res;
if (waitResponse(10000L, res) != 1) { return ""; }
res.replace(GSM_NL "OK" GSM_NL, "");
res.replace(GSM_NL, "");
res.trim();
return res;
}
/*
* GPRS functions
*/
protected:
bool gprsConnectImpl(const char* apn, const char* user = NULL,
const char* pwd = NULL) {
gprsDisconnect();
// Set the Bearer for the IP
sendAT(GF(
"+SAPBR=3,1,\"Contype\",\"GPRS\"")); // Set the connection type to GPRS
waitResponse();
sendAT(GF("+SAPBR=3,1,\"APN\",\""), apn, '"'); // Set the APN
waitResponse();
if (user && strlen(user) > 0) {
sendAT(GF("+SAPBR=3,1,\"USER\",\""), user, '"'); // Set the user name
waitResponse();
}
if (pwd && strlen(pwd) > 0) {
sendAT(GF("+SAPBR=3,1,\"PWD\",\""), pwd, '"'); // Set the password
waitResponse();
}
// Define the PDP context
sendAT(GF("+CGDCONT=1,\"IP\",\""), apn, '"');
waitResponse();
// Activate the PDP context
sendAT(GF("+CGACT=1,1"));
waitResponse(60000L);
// Open the definied GPRS bearer context
sendAT(GF("+SAPBR=1,1"));
waitResponse(85000L);
// Query the GPRS bearer context status
sendAT(GF("+SAPBR=2,1"));
if (waitResponse(30000L) != 1) { return false; }
// Attach to GPRS
sendAT(GF("+CGATT=1"));
if (waitResponse(60000L) != 1) { return false; }
// TODO(?): wait AT+CGATT?
// Set to multi-IP
sendAT(GF("+CIPMUX=1"));
if (waitResponse() != 1) { return false; }
// Put in "quick send" mode (thus no extra "Send OK")
sendAT(GF("+CIPQSEND=1"));
if (waitResponse() != 1) { return false; }
// Set to get data manually
sendAT(GF("+CIPRXGET=1"));
if (waitResponse() != 1) { return false; }
// Start Task and Set APN, USER NAME, PASSWORD
sendAT(GF("+CSTT=\""), apn, GF("\",\""), user, GF("\",\""), pwd, GF("\""));
if (waitResponse(60000L) != 1) { return false; }
// Bring Up Wireless Connection with GPRS or CSD
sendAT(GF("+CIICR"));
if (waitResponse(60000L) != 1) { return false; }
// Get Local IP Address, only assigned after connection
sendAT(GF("+CIFSR;E0"));
if (waitResponse(10000L) != 1) { return false; }
return true;
}
bool gprsDisconnectImpl() {
// Shut the TCP/IP connection
// CIPSHUT will close *all* open connections
sendAT(GF("+CIPSHUT"));
if (waitResponse(60000L) != 1) { return false; }
sendAT(GF("+CGATT=0")); // Deactivate the bearer context
if (waitResponse(60000L) != 1) { return false; }
return true;
}
/*
* SIM card functions
*/
protected:
// Able to follow all SIM card functions as inherited from the template
/*
* Messaging functions
*/
protected:
// Follows all messaging functions per template
/*
* GPS location functions
*/
protected:
// enable GPS
bool enableGPSImpl() {
sendAT(GF("+CGNSPWR=1"));
if (waitResponse() != 1) { return false; }
return true;
}
bool disableGPSImpl() {
sendAT(GF("+CGNSPWR=0"));
if (waitResponse() != 1) { return false; }
return true;
}
// get the RAW GPS output
String getGPSrawImpl() {
sendAT(GF("+CGNSINF"));
if (waitResponse(GF(GSM_NL "+CGNSINF:")) != 1) { return ""; }
String res = stream.readStringUntil('\n');
waitResponse();
res.trim();
return res;
}
// get GPS informations
bool getGPSImpl(float* lat, float* lon, float* speed = 0, int* alt = 0,
int* vsat = 0, int* usat = 0, int* year = 0, int* month = 0,
int* day = 0, int* hour = 0, int* minute = 0,
int* second = 0) {
bool fix = false;
sendAT(GF("+CGNSINF"));
if (waitResponse(GF(GSM_NL "+CGNSINF:")) != 1) { return false; }
streamSkipUntil(','); // GNSS run status
if (streamGetInt(',') == 1) fix = true; // fix status
// UTC date & Time
char dtSBuff[7] = {'\0'};
stream.readBytes(dtSBuff, 4); // Four digit year
dtSBuff[4] = '\0'; // null terminate buffer
if (year != NULL) *year = atoi(dtSBuff); // Convert to int
stream.readBytes(dtSBuff, 2); // Two digit month
dtSBuff[2] = '\0';
if (month != NULL) *month = atoi(dtSBuff);
stream.readBytes(dtSBuff, 2); // Two digit day
dtSBuff[2] = '\0';
if (day != NULL) *day = atoi(dtSBuff);
stream.readBytes(dtSBuff, 2); // Two digit hour
dtSBuff[2] = '\0';
if (hour != NULL) *hour = atoi(dtSBuff);
stream.readBytes(dtSBuff, 2); // Two digit minute
dtSBuff[2] = '\0';
if (minute != NULL) *minute = atoi(dtSBuff);
stream.readBytes(dtSBuff, 6); // 6 digit second with subseconds
dtSBuff[6] = '\0';
if (second != NULL) *second = atoi(dtSBuff);
// *secondWithSS = atof(dtSBuff);
streamSkipUntil(','); // Throw away the final comma
*lat = streamGetFloat(','); // Latitude
*lon = streamGetFloat(','); // Longitude
if (alt != NULL) *alt = streamGetFloat(','); // MSL Altitude
if (speed != NULL) *speed = streamGetFloat(','); // Speed Over Ground
streamSkipUntil(','); // Course Over Ground
streamSkipUntil(','); // Fix Mode
streamSkipUntil(','); // Reserved1
streamSkipUntil(','); // Horizontal Dilution Of Precision
streamSkipUntil(','); // Position Dilution Of Precision
streamSkipUntil(','); // Vertical Dilution Of Precision
streamSkipUntil(','); // Reserved2
if (vsat != NULL) *vsat = streamGetInt(','); // GNSS Satellites in View
if (usat != NULL) *usat = streamGetInt(','); // GNSS Satellites Used
streamSkipUntil(','); // GLONASS Satellites Used
streamSkipUntil(','); // Reserved3
streamSkipUntil(','); // C/N0 max
streamSkipUntil(','); // HPA
streamSkipUntil('\n'); // VPA
waitResponse();
return fix;
}
/*
* Time functions
*/
// Can follow CCLK as per template
/*
* Battery functions
*/
protected:
// Follows all battery functions per template
/*
* Client related functions
*/
protected:
bool modemConnect(const char* host, uint16_t port, uint8_t mux,
bool ssl = false, int timeout_s = 75) {
if (ssl) { DBG("SSL not yet supported on this module!"); }
int rsp;
uint32_t timeout_ms = ((uint32_t)timeout_s) * 1000;
sendAT(GF("+CIPSTART="), mux, ',', GF("\"TCP"), GF("\",\""), host,
GF("\","), port);
rsp = waitResponse(
timeout_ms, GF("CONNECT OK" GSM_NL), GF("CONNECT FAIL" GSM_NL),
GF("ALREADY CONNECT" GSM_NL), GF("ERROR" GSM_NL),
GF("CLOSE OK" GSM_NL)); // Happens when HTTPS handshake fails
return (1 == rsp);
}
int16_t modemSend(const void* buff, size_t len, uint8_t mux) {
sendAT(GF("+CIPSEND="), mux, ',', (uint16_t)len);
if (waitResponse(GF(">")) != 1) { return 0; }
stream.write(reinterpret_cast<const uint8_t*>(buff), len);
stream.flush();
if (waitResponse(GF(GSM_NL "DATA ACCEPT:")) != 1) { return 0; }
streamSkipUntil(','); // Skip mux
return streamGetInt('\n');
}
size_t modemRead(size_t size, uint8_t mux) {
#ifdef TINY_GSM_USE_HEX
sendAT(GF("+CIPRXGET=3,"), mux, ',', (uint16_t)size);
if (waitResponse(GF("+CIPRXGET:")) != 1) { return 0; }
#else
sendAT(GF("+CIPRXGET=2,"), mux, ',', (uint16_t)size);
if (waitResponse(GF("+CIPRXGET:")) != 1) { return 0; }
#endif
streamSkipUntil(','); // Skip Rx mode 2/normal or 3/HEX
streamSkipUntil(','); // Skip mux
int len_requested = streamGetInt(',');
// ^^ Requested number of data bytes (1-1460 bytes)to be read
int len_confirmed = streamGetInt('\n');
// ^^ Confirmed number of data bytes to be read, which may be less than
// requested. 0 indicates that no data can be read. This is actually be the
// number of bytes that will be remaining after the read
for (int i = 0; i < len_requested; i++) {
uint32_t startMillis = millis();
#ifdef TINY_GSM_USE_HEX
while (stream.available() < 2 &&
(millis() - startMillis < sockets[mux]->_timeout)) {
TINY_GSM_YIELD();
}
char buf[4] = {
0,
};
buf[0] = stream.read();
buf[1] = stream.read();
char c = strtol(buf, NULL, 16);
#else
while (!stream.available() &&
(millis() - startMillis < sockets[mux]->_timeout)) {
TINY_GSM_YIELD();
}
char c = stream.read();
#endif
sockets[mux]->rx.put(c);
}
DBG("### READ:", len_requested, "from", mux);
// sockets[mux]->sock_available = modemGetAvailable(mux);
sockets[mux]->sock_available = len_confirmed;
waitResponse();
return len_requested;
}
size_t modemGetAvailable(uint8_t mux) {
sendAT(GF("+CIPRXGET=4,"), mux);
size_t result = 0;
if (waitResponse(GF("+CIPRXGET:")) == 1) {
streamSkipUntil(','); // Skip mode 4
streamSkipUntil(','); // Skip mux
result = streamGetInt('\n');
waitResponse();
}
DBG("### Available:", result, "on", mux);
if (!result) { sockets[mux]->sock_connected = modemGetConnected(mux); }
return result;
}
bool modemGetConnected(uint8_t mux) {
sendAT(GF("+CIPSTATUS="), mux);
int res = waitResponse(GF(",\"CONNECTED\""), GF(",\"CLOSED\""),
GF(",\"CLOSING\""), GF(",\"INITIAL\""));
waitResponse();
return 1 == res;
}
/*
* Utilities
*/
public:
// TODO(vshymanskyy): Optimize this!
uint8_t waitResponse(uint32_t timeout_ms, String& data,
GsmConstStr r1 = GFP(GSM_OK),
GsmConstStr r2 = GFP(GSM_ERROR),
GsmConstStr r3 = GFP(GSM_CME_ERROR),
GsmConstStr r4 = NULL, GsmConstStr r5 = NULL) {
/*String r1s(r1); r1s.trim();
String r2s(r2); r2s.trim();
String r3s(r3); r3s.trim();
String r4s(r4); r4s.trim();
String r5s(r5); r5s.trim();
DBG("### ..:", r1s, ",", r2s, ",", r3s, ",", r4s, ",", r5s);*/
data.reserve(64);
uint8_t index = 0;
uint32_t startMillis = millis();
do {
TINY_GSM_YIELD();
while (stream.available() > 0) {
TINY_GSM_YIELD();
int a = stream.read();
if (a <= 0) continue; // Skip 0x00 bytes, just in case
data += static_cast<char>(a);
if (r1 && data.endsWith(r1)) {
index = 1;
goto finish;
} else if (r2 && data.endsWith(r2)) {
index = 2;
goto finish;
} else if (r3 && data.endsWith(r3)) {
if (r3 == GFP(GSM_CME_ERROR)) {
streamSkipUntil('\n'); // Read out the error
}
index = 3;
goto finish;
} else if (r4 && data.endsWith(r4)) {
index = 4;
goto finish;
} else if (r5 && data.endsWith(r5)) {
index = 5;
goto finish;
} else if (data.endsWith(GF(GSM_NL "+CIPRXGET:"))) {
int mode = streamGetInt(',');
if (mode == 1) {
int mux = streamGetInt('\n');
if (mux >= 0 && mux < TINY_GSM_MUX_COUNT && sockets[mux]) {
sockets[mux]->got_data = true;
}
data = "";
DBG("### Got Data:", mux);
} else {
data += mode;
}
} else if (data.endsWith(GF(GSM_NL "+RECEIVE:"))) {
int mux = streamGetInt(',');
int len = streamGetInt('\n');
if (mux >= 0 && mux < TINY_GSM_MUX_COUNT && sockets[mux]) {
sockets[mux]->got_data = true;
sockets[mux]->sock_available = len;
}
data = "";
DBG("### Got Data:", len, "on", mux);
} else if (data.endsWith(GF("CLOSED" GSM_NL))) {
int nl = data.lastIndexOf(GSM_NL, data.length() - 8);
int coma = data.indexOf(',', nl + 2);
int mux = data.substring(nl + 2, coma).toInt();
if (mux >= 0 && mux < TINY_GSM_MUX_COUNT && sockets[mux]) {
sockets[mux]->sock_connected = false;
}
data = "";
DBG("### Closed: ", mux);
}
}
} while (millis() - startMillis < timeout_ms);
finish:
if (!index) {
data.trim();
if (data.length()) { DBG("### Unhandled:", data); }
data = "";
}
// data.replace(GSM_NL, "/");
// DBG('<', index, '>', data);
return index;
}
uint8_t waitResponse(uint32_t timeout_ms, GsmConstStr r1 = GFP(GSM_OK),
GsmConstStr r2 = GFP(GSM_ERROR),
GsmConstStr r3 = GFP(GSM_CME_ERROR),
GsmConstStr r4 = NULL, GsmConstStr r5 = NULL) {
String data;
return waitResponse(timeout_ms, data, r1, r2, r3, r4, r5);
}
uint8_t waitResponse(GsmConstStr r1 = GFP(GSM_OK),
GsmConstStr r2 = GFP(GSM_ERROR),
GsmConstStr r3 = GFP(GSM_CME_ERROR),
GsmConstStr r4 = NULL, GsmConstStr r5 = NULL) {
return waitResponse(1000, r1, r2, r3, r4, r5);
}
protected:
Stream& stream;
GsmClientSim7000* sockets[TINY_GSM_MUX_COUNT];
const char* gsmNL = GSM_NL;
};
#endif // SRC_TINYGSMCLIENTSIM7000_H_