You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

925 lines
23 KiB

/**
* @file TinyGsmClientSIM800.h
* @author Volodymyr Shymanskyy
* @license LGPL-3.0
* @copyright Copyright (c) 2016 Volodymyr Shymanskyy
* @date Nov 2016
*/
#ifndef TinyGsmClientSIM800_h
#define TinyGsmClientSIM800_h
//#pragma message("TinyGSM: TinyGsmClientSIM800")
//#define TINY_GSM_DEBUG Serial
//#define TINY_GSM_USE_HEX
#if !defined(TINY_GSM_RX_BUFFER)
#define TINY_GSM_RX_BUFFER 64
#endif
#define TINY_GSM_MUX_COUNT 5
#include <TinyGsmCommon.h>
#define GSM_NL "\r\n"
static const char GSM_OK[] TINY_GSM_PROGMEM = "OK" GSM_NL;
static const char GSM_ERROR[] TINY_GSM_PROGMEM = "ERROR" GSM_NL;
enum SimStatus {
SIM_ERROR = 0,
SIM_READY = 1,
SIM_LOCKED = 2,
};
enum RegStatus {
REG_UNREGISTERED = 0,
REG_SEARCHING = 2,
REG_DENIED = 3,
REG_OK_HOME = 1,
REG_OK_ROAMING = 5,
REG_UNKNOWN = 4,
};
enum TinyGSMDateTimeFormat {
DATE_FULL = 0,
DATE_TIME = 1,
DATE_DATE = 2
};
class TinyGsmSim800
{
public:
class GsmClient : public Client
{
friend class TinyGsmSim800;
typedef TinyGsmFifo<uint8_t, TINY_GSM_RX_BUFFER> RxFifo;
public:
GsmClient() {}
GsmClient(TinyGsmSim800& modem, uint8_t mux = 1) {
init(&modem, mux);
}
bool init(TinyGsmSim800* modem, uint8_t mux = 1) {
this->at = modem;
this->mux = mux;
sock_available = 0;
prev_check = 0;
sock_connected = false;
got_data = false;
at->sockets[mux] = this;
return true;
}
public:
virtual int connect(const char *host, uint16_t port, int timeout_s) {
stop();
TINY_GSM_YIELD();
rx.clear();
sock_connected = at->modemConnect(host, port, mux, false, timeout_s);
return sock_connected;
}
TINY_GSM_CLIENT_CONNECT_OVERLOADS()
virtual void stop() {
TINY_GSM_YIELD();
// Read and dump anything remaining in the modem's internal buffer.
// The socket will appear open in response to connected() even after it
// closes until all data is read from the buffer.
// Doing it this way allows the external mcu to find and get all of the data
// that it wants from the socket even if it was closed externally.
rx.clear();
at->maintain();
while (sock_available > 0) {
at->modemRead(TinyGsmMin((uint16_t)rx.free(), sock_available), mux);
rx.clear();
at->maintain();
}
at->sendAT(GF("+CIPCLOSE="), mux, GF(",1")); // Quick close
sock_connected = false;
at->waitResponse();
}
TINY_GSM_CLIENT_WRITE()
TINY_GSM_CLIENT_AVAILABLE_WITH_BUFFER_CHECK()
TINY_GSM_CLIENT_READ_WITH_BUFFER_CHECK()
TINY_GSM_CLIENT_PEEK_FLUSH_CONNECTED()
/*
* Extended API
*/
String remoteIP() TINY_GSM_ATTR_NOT_IMPLEMENTED;
private:
TinyGsmSim800* at;
uint8_t mux;
uint16_t sock_available;
uint32_t prev_check;
bool sock_connected;
bool got_data;
RxFifo rx;
};
class GsmClientSecure : public GsmClient
{
public:
GsmClientSecure() {}
GsmClientSecure(TinyGsmSim800& modem, uint8_t mux = 1)
: GsmClient(modem, mux)
{}
public:
virtual int connect(const char *host, uint16_t port, int timeout_s) {
stop();
TINY_GSM_YIELD();
rx.clear();
sock_connected = at->modemConnect(host, port, mux, true, timeout_s);
return sock_connected;
}
};
public:
TinyGsmSim800(Stream& stream)
: stream(stream)
{
memset(sockets, 0, sizeof(sockets));
}
/*
* Basic functions
*/
bool begin(const char* pin = NULL) {
return init(pin);
}
bool init(const char* pin = NULL) {
DBG(GF("### TinyGSM Version:"), TINYGSM_VERSION);
if (!testAT()) {
return false;
}
sendAT(GF("&FZ")); // Factory + Reset
waitResponse();
sendAT(GF("E0")); // Echo Off
if (waitResponse() != 1) {
return false;
}
DBG(GF("### Modem:"), getModemName());
getSimStatus();
return true;
}
String getModemName() {
#if defined(TINY_GSM_MODEM_SIM800)
return "SIMCom SIM800";
#elif defined(TINY_GSM_MODEM_SIM808)
return "SIMCom SIM808";
#elif defined(TINY_GSM_MODEM_SIM868)
return "SIMCom SIM868";
#elif defined(TINY_GSM_MODEM_SIM900)
return "SIMCom SIM900";
#endif
return "SIMCom SIM800";
}
TINY_GSM_MODEM_SET_BAUD_IPR()
TINY_GSM_MODEM_TEST_AT()
TINY_GSM_MODEM_MAINTAIN_CHECK_SOCKS()
bool factoryDefault() {
sendAT(GF("&FZE0&W")); // Factory + Reset + Echo Off + Write
waitResponse();
sendAT(GF("+IPR=0")); // Auto-baud
waitResponse();
sendAT(GF("+IFC=0,0")); // No Flow Control
waitResponse();
sendAT(GF("+ICF=3,3")); // 8 data 0 parity 1 stop
waitResponse();
sendAT(GF("+CSCLK=0")); // Disable Slow Clock
waitResponse();
sendAT(GF("&W")); // Write configuration
return waitResponse() == 1;
}
TINY_GSM_MODEM_GET_INFO_ATI()
bool hasSSL() {
#if defined(TINY_GSM_MODEM_SIM900)
return false;
#else
sendAT(GF("+CIPSSL=?"));
if (waitResponse(GF(GSM_NL "+CIPSSL:")) != 1) {
return false;
}
return waitResponse() == 1;
#endif
}
bool hasWifi() {
return false;
}
bool hasGPRS() {
return true;
}
/*
* Power functions
*/
bool restart() {
if (!testAT()) {
return false;
}
//Enable Local Time Stamp for getting network time
// TODO: Find a better place for this
sendAT(GF("+CLTS=1"));
if (waitResponse(10000L) != 1) {
return false;
}
sendAT(GF("&W"));
waitResponse();
sendAT(GF("+CFUN=0"));
if (waitResponse(10000L) != 1) {
return false;
}
sendAT(GF("+CFUN=1,1"));
if (waitResponse(10000L) != 1) {
return false;
}
delay(3000);
return init();
}
bool poweroff() {
sendAT(GF("+CPOWD=1"));
return waitResponse(GF("NORMAL POWER DOWN")) == 1;
}
bool radioOff() {
sendAT(GF("+CFUN=0"));
if (waitResponse(10000L) != 1) {
return false;
}
delay(3000);
return true;
}
/*
During sleep, the SIM800 module has its serial communication disabled. In order to reestablish communication
pull the DRT-pin of the SIM800 module LOW for at least 50ms. Then use this function to disable sleep mode.
The DTR-pin can then be released again.
*/
bool sleepEnable(bool enable = true) {
sendAT(GF("+CSCLK="), enable);
return waitResponse() == 1;
}
/*
* SIM card functions
*/
TINY_GSM_MODEM_SIM_UNLOCK_CPIN()
TINY_GSM_MODEM_GET_SIMCCID_CCID()
TINY_GSM_MODEM_GET_IMEI_GSN()
SimStatus getSimStatus(unsigned long timeout_ms = 10000L) {
for (unsigned long start = millis(); millis() - start < timeout_ms; ) {
sendAT(GF("+CPIN?"));
if (waitResponse(GF(GSM_NL "+CPIN:")) != 1) {
delay(1000);
continue;
}
int status = waitResponse(GF("READY"), GF("SIM PIN"), GF("SIM PUK"), GF("NOT INSERTED"));
waitResponse();
switch (status) {
case 2:
case 3: return SIM_LOCKED;
case 1: return SIM_READY;
default: return SIM_ERROR;
}
}
return SIM_ERROR;
}
TINY_GSM_MODEM_GET_REGISTRATION_XREG(CREG)
TINY_GSM_MODEM_GET_OPERATOR_COPS()
/*
* Generic network functions
*/
TINY_GSM_MODEM_GET_CSQ()
bool isNetworkConnected() {
RegStatus s = getRegistrationStatus();
return (s == REG_OK_HOME || s == REG_OK_ROAMING);
}
TINY_GSM_MODEM_WAIT_FOR_NETWORK()
/*
* GPRS functions
*/
bool gprsConnect(const char* apn, const char* user = NULL, const char* pwd = NULL) {
gprsDisconnect();
// Set the Bearer for the IP
sendAT(GF("+SAPBR=3,1,\"Contype\",\"GPRS\"")); // Set the connection type to GPRS
waitResponse();
sendAT(GF("+SAPBR=3,1,\"APN\",\""), apn, '"'); // Set the APN
waitResponse();
if (user && strlen(user) > 0) {
sendAT(GF("+SAPBR=3,1,\"USER\",\""), user, '"'); // Set the user name
waitResponse();
}
if (pwd && strlen(pwd) > 0) {
sendAT(GF("+SAPBR=3,1,\"PWD\",\""), pwd, '"'); // Set the password
waitResponse();
}
// Define the PDP context
sendAT(GF("+CGDCONT=1,\"IP\",\""), apn, '"');
waitResponse();
// Activate the PDP context
sendAT(GF("+CGACT=1,1"));
waitResponse(60000L);
// Open the definied GPRS bearer context
sendAT(GF("+SAPBR=1,1"));
waitResponse(85000L);
// Query the GPRS bearer context status
sendAT(GF("+SAPBR=2,1"));
if (waitResponse(30000L) != 1)
return false;
// Attach to GPRS
sendAT(GF("+CGATT=1"));
if (waitResponse(60000L) != 1)
return false;
// TODO: wait AT+CGATT?
// Set to multi-IP
sendAT(GF("+CIPMUX=1"));
if (waitResponse() != 1) {
return false;
}
// Put in "quick send" mode (thus no extra "Send OK")
sendAT(GF("+CIPQSEND=1"));
if (waitResponse() != 1) {
return false;
}
// Set to get data manually
sendAT(GF("+CIPRXGET=1"));
if (waitResponse() != 1) {
return false;
}
// Start Task and Set APN, USER NAME, PASSWORD
sendAT(GF("+CSTT=\""), apn, GF("\",\""), user, GF("\",\""), pwd, GF("\""));
if (waitResponse(60000L) != 1) {
return false;
}
// Bring Up Wireless Connection with GPRS or CSD
sendAT(GF("+CIICR"));
if (waitResponse(60000L) != 1) {
return false;
}
// Get Local IP Address, only assigned after connection
sendAT(GF("+CIFSR;E0"));
if (waitResponse(10000L) != 1) {
return false;
}
// Configure Domain Name Server (DNS)
sendAT(GF("+CDNSCFG=\"8.8.8.8\",\"8.8.4.4\""));
if (waitResponse() != 1) {
return false;
}
return true;
}
bool gprsDisconnect() {
// Shut the TCP/IP connection
// CIPSHUT will close *all* open connections
sendAT(GF("+CIPSHUT"));
if (waitResponse(60000L) != 1)
return false;
sendAT(GF("+CGATT=0")); // Deactivate the bearer context
if (waitResponse(60000L) != 1)
return false;
return true;
}
bool isGprsConnected() {
sendAT(GF("+CGATT?"));
if (waitResponse(GF(GSM_NL "+CGATT:")) != 1) {
return false;
}
int res = stream.readStringUntil('\n').toInt();
waitResponse();
if (res != 1)
return false;
sendAT(GF("+CIFSR;E0")); // Another option is to use AT+CGPADDR=1
if (waitResponse() != 1)
return false;
return true;
}
/*
* IP Address functions
*/
String getLocalIP() {
sendAT(GF("+CIFSR;E0"));
String res;
if (waitResponse(10000L, res) != 1) {
return "";
}
res.replace(GSM_NL "OK" GSM_NL, "");
res.replace(GSM_NL, "");
res.trim();
return res;
}
IPAddress localIP() {
return TinyGsmIpFromString(getLocalIP());
}
/*
* Phone Call functions
*/
bool setGsmBusy(bool busy = true) {
sendAT(GF("+GSMBUSY="), busy ? 1 : 0);
return waitResponse() == 1;
}
bool callAnswer() {
sendAT(GF("A"));
return waitResponse() == 1;
}
// Returns true on pick-up, false on error/busy
bool callNumber(const String& number) {
if (number == GF("last")) {
sendAT(GF("DL"));
} else {
sendAT(GF("D"), number, ";");
}
int status = waitResponse(60000L,
GFP(GSM_OK),
GF("BUSY" GSM_NL),
GF("NO ANSWER" GSM_NL),
GF("NO CARRIER" GSM_NL));
switch (status) {
case 1: return true;
case 2:
case 3: return false;
default: return false;
}
}
bool callHangup() {
sendAT(GF("H"));
return waitResponse() == 1;
}
// 0-9,*,#,A,B,C,D
bool dtmfSend(char cmd, int duration_ms = 100) {
duration_ms = constrain(duration_ms, 100, 1000);
sendAT(GF("+VTD="), duration_ms / 100); // VTD accepts in 1/10 of a second
waitResponse();
sendAT(GF("+VTS="), cmd);
return waitResponse(10000L) == 1;
}
/*
* Messaging functions
*/
String sendUSSD(const String& code) {
sendAT(GF("+CMGF=1"));
waitResponse();
sendAT(GF("+CSCS=\"HEX\""));
waitResponse();
sendAT(GF("+CUSD=1,\""), code, GF("\""));
if (waitResponse() != 1) {
return "";
}
if (waitResponse(10000L, GF(GSM_NL "+CUSD:")) != 1) {
return "";
}
stream.readStringUntil('"');
String hex = stream.readStringUntil('"');
stream.readStringUntil(',');
int dcs = stream.readStringUntil('\n').toInt();
if (dcs == 15) {
return TinyGsmDecodeHex8bit(hex);
} else if (dcs == 72) {
return TinyGsmDecodeHex16bit(hex);
} else {
return hex;
}
}
bool sendSMS(const String& number, const String& text) {
sendAT(GF("+CMGF=1"));
waitResponse();
//Set GSM 7 bit default alphabet (3GPP TS 23.038)
sendAT(GF("+CSCS=\"GSM\""));
waitResponse();
sendAT(GF("+CMGS=\""), number, GF("\""));
if (waitResponse(GF(">")) != 1) {
return false;
}
stream.print(text);
stream.write((char)0x1A);
stream.flush();
return waitResponse(60000L) == 1;
}
bool sendSMS_UTF16(const String& number, const void* text, size_t len) {
sendAT(GF("+CMGF=1"));
waitResponse();
sendAT(GF("+CSCS=\"HEX\""));
waitResponse();
sendAT(GF("+CSMP=17,167,0,8"));
waitResponse();
sendAT(GF("+CMGS=\""), number, GF("\""));
if (waitResponse(GF(">")) != 1) {
return false;
}
uint16_t* t = (uint16_t*)text;
for (size_t i=0; i<len; i++) {
uint8_t c = t[i] >> 8;
if (c < 0x10) { stream.print('0'); }
stream.print(c, HEX);
c = t[i] & 0xFF;
if (c < 0x10) { stream.print('0'); }
stream.print(c, HEX);
}
stream.write((char)0x1A);
stream.flush();
return waitResponse(60000L) == 1;
}
/*
* Location functions
*/
String getGsmLocation() {
sendAT(GF("+CIPGSMLOC=1,1"));
if (waitResponse(10000L, GF(GSM_NL "+CIPGSMLOC:")) != 1) {
return "";
}
String res = stream.readStringUntil('\n');
waitResponse();
res.trim();
return res;
}
/*
* Time functions
*/
String getGSMDateTime(TinyGSMDateTimeFormat format) {
sendAT(GF("+CCLK?"));
if (waitResponse(2000L, GF(GSM_NL "+CCLK: \"")) != 1) {
return "";
}
String res;
switch(format) {
case DATE_FULL:
res = stream.readStringUntil('"');
break;
case DATE_TIME:
streamSkipUntil(',');
res = stream.readStringUntil('"');
break;
case DATE_DATE:
res = stream.readStringUntil(',');
break;
}
return res;
}
/*
* Battery & temperature functions
*/
// Use: float vBatt = modem.getBattVoltage() / 1000.0;
uint16_t getBattVoltage() {
sendAT(GF("+CBC"));
if (waitResponse(GF(GSM_NL "+CBC:")) != 1) {
return 0;
}
streamSkipUntil(','); // Skip battery charge status
streamSkipUntil(','); // Skip battery charge level
// return voltage in mV
uint16_t res = stream.readStringUntil(',').toInt();
// Wait for final OK
waitResponse();
return res;
}
int8_t getBattPercent() {
sendAT(GF("+CBC"));
if (waitResponse(GF(GSM_NL "+CBC:")) != 1) {
return false;
}
streamSkipUntil(','); // Skip battery charge status
// Read battery charge level
int res = stream.readStringUntil(',').toInt();
// Wait for final OK
waitResponse();
return res;
}
uint8_t getBattChargeState() {
sendAT(GF("+CBC?"));
if (waitResponse(GF(GSM_NL "+CBC:")) != 1) {
return false;
}
// Read battery charge status
int res = stream.readStringUntil(',').toInt();
// Wait for final OK
waitResponse();
return res;
}
bool getBattStats(uint8_t &chargeState, int8_t &percent, uint16_t &milliVolts) {
sendAT(GF("+CBC?"));
if (waitResponse(GF(GSM_NL "+CBC:")) != 1) {
return false;
}
chargeState = stream.readStringUntil(',').toInt();
percent = stream.readStringUntil(',').toInt();
milliVolts = stream.readStringUntil('\n').toInt();
// Wait for final OK
waitResponse();
return true;
}
float getTemperature() TINY_GSM_ATTR_NOT_AVAILABLE;
/*
* Client related functions
*/
protected:
bool modemConnect(const char* host, uint16_t port, uint8_t mux,
bool ssl = false, int timeout_s = 75)
{
int rsp;
uint32_t timeout_ms = ((uint32_t)timeout_s)*1000;
#if !defined(TINY_GSM_MODEM_SIM900)
sendAT(GF("+CIPSSL="), ssl);
rsp = waitResponse();
if (ssl && rsp != 1) {
return false;
}
#endif
sendAT(GF("+CIPSTART="), mux, ',', GF("\"TCP"), GF("\",\""), host, GF("\","), port);
rsp = waitResponse(timeout_ms,
GF("CONNECT OK" GSM_NL),
GF("CONNECT FAIL" GSM_NL),
GF("ALREADY CONNECT" GSM_NL),
GF("ERROR" GSM_NL),
GF("CLOSE OK" GSM_NL) // Happens when HTTPS handshake fails
);
return (1 == rsp);
}
int16_t modemSend(const void* buff, size_t len, uint8_t mux) {
sendAT(GF("+CIPSEND="), mux, ',', len);
if (waitResponse(GF(">")) != 1) {
return 0;
}
stream.write((uint8_t*)buff, len);
stream.flush();
if (waitResponse(GF(GSM_NL "DATA ACCEPT:")) != 1) {
return 0;
}
streamSkipUntil(','); // Skip mux
return stream.readStringUntil('\n').toInt();
}
size_t modemRead(size_t size, uint8_t mux) {
#ifdef TINY_GSM_USE_HEX
sendAT(GF("+CIPRXGET=3,"), mux, ',', size);
if (waitResponse(GF("+CIPRXGET:")) != 1) {
return 0;
}
#else
sendAT(GF("+CIPRXGET=2,"), mux, ',', size);
if (waitResponse(GF("+CIPRXGET:")) != 1) {
return 0;
}
#endif
streamSkipUntil(','); // Skip Rx mode 2/normal or 3/HEX
streamSkipUntil(','); // Skip mux
size_t len_requested = stream.readStringUntil(',').toInt();
// ^^ Requested number of data bytes (1-1460 bytes)to be read
size_t len_confirmed = stream.readStringUntil('\n').toInt();
if (len_confirmed < len_requested) {
DBG(len_requested - len_confirmed, "fewer bytes confirmed than requested!");
}
sockets[mux]->sock_available = len_confirmed;
// ^^ Confirmed number of data bytes to be read, which may be less than requested.
// 0 indicates that no data can be read.
for (size_t i=0; i<TinyGsmMin(len_confirmed, len_requested) ; i++) {
uint32_t startMillis = millis();
#ifdef TINY_GSM_USE_HEX
while (stream.available() < 2 && (millis() - startMillis < sockets[mux]->_timeout)) { TINY_GSM_YIELD(); }
char buf[4] = { 0, };
buf[0] = stream.read();
buf[1] = stream.read();
char c = strtol(buf, NULL, 16);
#else
while (!stream.available() && (millis() - startMillis < sockets[mux]->_timeout)) { TINY_GSM_YIELD(); }
char c = stream.read();
#endif
sockets[mux]->rx.put(c);
}
waitResponse();
DBG("### READ:", TinyGsmMin(len_confirmed, len_requested), "from", mux);
return TinyGsmMin(len_confirmed, len_requested);
}
size_t modemGetAvailable(uint8_t mux) {
sendAT(GF("+CIPRXGET=4,"), mux);
size_t result = 0;
if (waitResponse(GF("+CIPRXGET:")) == 1) {
streamSkipUntil(','); // Skip mode 4
streamSkipUntil(','); // Skip mux
result = stream.readStringUntil('\n').toInt();
waitResponse();
}
if (!result) {
sockets[mux]->sock_connected = modemGetConnected(mux);
}
return result;
}
bool modemGetConnected(uint8_t mux) {
sendAT(GF("+CIPSTATUS="), mux);
int res = waitResponse(GF(",\"CONNECTED\""), GF(",\"CLOSED\""), GF(",\"CLOSING\""), GF(",\"INITIAL\""));
waitResponse();
return 1 == res;
}
public:
/*
Utilities
*/
TINY_GSM_MODEM_STREAM_UTILITIES()
// TODO: Optimize this!
uint8_t waitResponse(uint32_t timeout_ms, String& data,
GsmConstStr r1=GFP(GSM_OK), GsmConstStr r2=GFP(GSM_ERROR),
GsmConstStr r3=NULL, GsmConstStr r4=NULL, GsmConstStr r5=NULL)
{
/*String r1s(r1); r1s.trim();
String r2s(r2); r2s.trim();
String r3s(r3); r3s.trim();
String r4s(r4); r4s.trim();
String r5s(r5); r5s.trim();
DBG("### ..:", r1s, ",", r2s, ",", r3s, ",", r4s, ",", r5s);*/
data.reserve(64);
int index = 0;
unsigned long startMillis = millis();
do {
TINY_GSM_YIELD();
while (stream.available() > 0) {
int a = stream.read();
if (a <= 0) continue; // Skip 0x00 bytes, just in case
data += (char)a;
if (r1 && data.endsWith(r1)) {
index = 1;
goto finish;
} else if (r2 && data.endsWith(r2)) {
index = 2;
goto finish;
} else if (r3 && data.endsWith(r3)) {
index = 3;
goto finish;
} else if (r4 && data.endsWith(r4)) {
index = 4;
goto finish;
} else if (r5 && data.endsWith(r5)) {
index = 5;
goto finish;
} else if (data.endsWith(GF(GSM_NL "+CIPRXGET:"))) {
String mode = stream.readStringUntil(',');
if (mode.toInt() == 1) {
int mux = stream.readStringUntil('\n').toInt();
if (mux >= 0 && mux < TINY_GSM_MUX_COUNT && sockets[mux]) {
sockets[mux]->got_data = true;
}
data = "";
DBG("### Got Data:", mux);
} else {
data += mode;
}
} else if (data.endsWith(GF(GSM_NL "+RECEIVE:"))) {
int mux = stream.readStringUntil(',').toInt();
int len = stream.readStringUntil('\n').toInt();
if (mux >= 0 && mux < TINY_GSM_MUX_COUNT && sockets[mux]) {
sockets[mux]->got_data = true;
sockets[mux]->sock_available = len;
}
data = "";
DBG("### Got Data:", len, "on", mux);
} else if (data.endsWith(GF("CLOSED" GSM_NL))) {
int nl = data.lastIndexOf(GSM_NL, data.length()-8);
int coma = data.indexOf(',', nl+2);
int mux = data.substring(nl+2, coma).toInt();
if (mux >= 0 && mux < TINY_GSM_MUX_COUNT && sockets[mux]) {
sockets[mux]->sock_connected = false;
}
data = "";
DBG("### Closed: ", mux);
}
}
} while (millis() - startMillis < timeout_ms);
finish:
if (!index) {
data.trim();
if (data.length()) {
DBG("### Unhandled:", data);
}
data = "";
}
//DBG('<', index, '>');
return index;
}
uint8_t waitResponse(uint32_t timeout_ms,
GsmConstStr r1=GFP(GSM_OK), GsmConstStr r2=GFP(GSM_ERROR),
GsmConstStr r3=NULL, GsmConstStr r4=NULL, GsmConstStr r5=NULL)
{
String data;
return waitResponse(timeout_ms, data, r1, r2, r3, r4, r5);
}
uint8_t waitResponse(GsmConstStr r1=GFP(GSM_OK), GsmConstStr r2=GFP(GSM_ERROR),
GsmConstStr r3=NULL, GsmConstStr r4=NULL, GsmConstStr r5=NULL)
{
return waitResponse(1000, r1, r2, r3, r4, r5);
}
public:
Stream& stream;
protected:
GsmClient* sockets[TINY_GSM_MUX_COUNT];
};
#endif